AFLOW Prototype: A_hP3_152_a-001
This structure originally had the label A_hP3_152_a. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/SM1V
or
https://aflow.org/p/A_hP3_152_a-001
or
PDF Version
Prototype | Se |
AFLOW prototype label | A_hP3_152_a-001 |
Strukturbericht designation | $A8$ |
ICSD | 22251 |
Pearson symbol | hP3 |
Space group number | 152 |
Space group symbol | $P3_121$ |
AFLOW prototype command |
aflow --proto=A_hP3_152_a-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}$ |
Te, SeTe, Se$_{3}$Te
trigonal selenium.(Donohue, 1982) refers to it as the $\alpha$–Se structure, calling what we designate $\alpha$–Se and $\beta$–Se ($A_{l}$) as
monoclinic $\alpha$and
monoclinic $\beta$,respectively.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{1} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (3a) | Se I |
$\mathbf{B_{2}}$ | = | $x_{1} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{1} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (3a) | Se I |
$\mathbf{B_{3}}$ | = | $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}$ | = | $- a x_{1} \,\mathbf{\hat{x}}$ | (3a) | Se I |