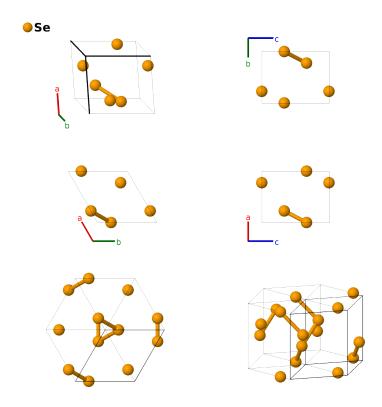
γ -Se (A8) Structure: A_hP3_152_a-001

This structure originally had the label A_hP3_152_a. Calls to that address will be redirected here.

Cite this page as: M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallo-graphic Prototypes: Part 1*, Comput. Mater. Sci. **136**, S1-828 (2017). doi: 10.1016/j.commatsci.2017.01.017

https://aflow.org/p/SM1V

 $https://aflow.org/p/A_hP3_152_a-001$



Prototype Se

AFLOW prototype label A_hP3_152_a-001

Strukturbericht designation A8

ICSD 22251

Pearson symbol hP3

Space group number 152

Space group symbol $P3_121$

AFLOW prototype command aflow --proto=A_hP3_152_a-001

--params= $a, c/a, x_1$

Other compounds with this structure

Te, SeTe, Se₃Te

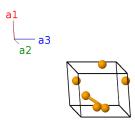
- There are a variety of naming conventions for selenium:
- (Cherin, 1967) refers to this structure as "trigonal selenium." (Donohue, 1982) refers to it as the α -Se structure, calling what we designate α -Se and β -Se (A_l) as "monoclinic α " and "monoclinic β ," respectively.
- When x = 1/3 this reduces to the A_i (β -Po) or A10 (α -Hg) structure.
- If, in addition, $c = \sqrt{6}a$, then the structure becomes fcc (A1).
- On the other hand, if $c = \sqrt{3/2}a$, then the structure becomes simple cubic (A_h) .
- \bullet This structure can also be found in the enantiomorphic space group $P3_2~\#153.$

Trigonal (Hexagonal) primitive vectors

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c\,\hat{\mathbf{z}}$$



Basis vectors

		$\begin{array}{c} \text{Lattice} \\ \text{coordinates} \end{array}$		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$x_1 \mathbf{a}_1 + \frac{1}{3} \mathbf{a}_3$	=	$\frac{1}{2}ax_1\hat{\mathbf{x}} - \frac{\sqrt{3}}{2}ax_1\hat{\mathbf{y}} + \frac{1}{3}c\hat{\mathbf{z}}$	(3a)	Se I
$\mathbf{B_2}$	=	$x_1 \mathbf{a}_2 + \frac{2}{3} \mathbf{a}_3$	=	$\frac{1}{2}ax_1\mathbf{\hat{x}} + \frac{\sqrt{3}}{2}ax_1\mathbf{\hat{y}} + \frac{2}{3}c\mathbf{\hat{z}}$	(3a)	Se I
$\mathbf{B_3}$	=	$-x_1 \mathbf{a}_1 - x_1 \mathbf{a}_2$	=	$-ax_1 \mathbf{\hat{x}}$	(3a)	Se I

References

[1] P. Cherin and P. Unger, *The crystal structure of trigonal selenium*, Inorg. Chem. **6**, 1589–1591 (1967), doi:10.1021/ic50054a037.

Found in

[1] J. Donohue, The Structures of the Elements (Robert E. Krieger Publishing Company, New York, 1974).