AFLOW Prototype: ABC_hP9_189_f_bc_g-003
This structure originally had the label ABC_hP9_189_g_ad_f. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/0T4U
or
https://aflow.org/p/ABC_hP9_189_f_bc_g-003
or
PDF Version
Prototype | AlNiZr |
AFLOW prototype label | ABC_hP9_189_f_bc_g-003 |
ICSD | 152131 |
Pearson symbol | hP9 |
Space group number | 189 |
Space group symbol | $P\overline{6}2m$ |
AFLOW prototype command |
aflow --proto=ABC_hP9_189_f_bc_g-003
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}$ |
AgAsCa, AgSiYb, AlCoPu, AlCuTm, AlNiTb, DyNiIn, DyNiSn, ErNiAl, FeCoAs, FeGaU, FeNiP, GaNiZr, GaPdSc, GdNiIn, GdNiSn, HoNiIn, RhSnZr, RuSiZr, ScIrP, TbNiIn, TiFeP, ZrRuAs, BSi$_{2}$Ni$_{6}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (1b) | Ni I |
$\mathbf{B_{2}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ | (2c) | Ni II |
$\mathbf{B_{3}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ | (2c) | Ni II |
$\mathbf{B_{4}}$ | = | $x_{3} \, \mathbf{a}_{1}$ | = | $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ | (3f) | Al I |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ | (3f) | Al I |
$\mathbf{B_{6}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ | = | $- a x_{3} \,\mathbf{\hat{x}}$ | (3f) | Al I |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | Zr I |
$\mathbf{B_{8}}$ | = | $x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | Zr I |
$\mathbf{B_{9}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3g) | Zr I |