AFLOW Prototype: A5B3_hP16_193_dg_g-001
This structure originally had the label A5B3_hP16_193_dg_g. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/AQ0J
or
https://aflow.org/p/A5B3_hP16_193_dg_g-001
or
PDF Version
Prototype | Mn$_{5}$Si$_{3}$ |
AFLOW prototype label | A5B3_hP16_193_dg_g-001 |
Strukturbericht designation | $D8_{8}$ |
Mineral name | mavlyanovite |
ICSD | 24359 |
Pearson symbol | hP16 |
Space group number | 193 |
Space group symbol | $P6_3/mcm$ |
AFLOW prototype command |
aflow --proto=A5B3_hP16_193_dg_g-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}$ |
Ce$_{5}$Ge$_{3}$, Ce$_{5}$Pb$_{3}$, Ce$_{5}$Sb$_{3}$, Dy$_{5}$Ge$_{3}$, Dy$_{5}$Sb$_{3}$, Er$_{5}$Si$_{3}$, Fe$_{5}$Si$_{3}$ (HT), Gd$_{5}$Ge$_{3}$, Gd$_{5}$Sb$_{3}$, Hf$_{5}$Ga$_{3}$, Hf$_{5}$Ge$_{3}$, Hf$_{5}$Si$_{3}$, Hf$_{5}$Sn$_{3}$, Ho$_{5}$Sb$_{3}$, Ho$_{5}$Sn$_{3}$, La$_{5}$Ge$_{3}$, La$_{5}$Pb$_{3}$, La$_{5}$Sb$_{3}$, Lu$_{5}$Si$_{3}$, Mg$_{5}$Hg$_{3}$, Mn$_{5}$Ge$_{3}$, Mn$_{5}$Si$_{3}$, Mo$_{5}$Si$_{3}$, Nb$_{5}$Ge$_{3}$, Nb$_{5}$Si$_{3}$, Nd$_{5}$Sb$_{3}$, Pr$_{5}$Sb$_{3}$, Sc$_{5}$Ga$_{3}$, Sc$_{5}$Ge$_{3}$, Sc$_{5}$Pb$_{3}$, Sc$_{5}$Si$_{3}$, Sc$_{5}$Sn$_{3}$, Ta$_{5}$Si$_{3}$, Tb$_{5}$Sb$_{3}$, Ti$_{5}$Ga$_{3}$, Ti$_{5}$Ge$_{3}$, Ti$_{5}$P$_{3}$, Ti$_{5}$Si$_{3}$, Ti$_{5}$Sn$_{3}$, U$_{5}$Ge$_{3}$, V$_{5}$Ga$_{3}$, V$_{5}$Ge$_{3}$, V$_{5}$Si$_{3}$, W$_{5}$Si$_{3}$, Y$_{5}$Ga$_{3}$, Y$_{5}$Ge$_{3}$, Y$_{5}$Pb$_{3}$, Y$_{5}$Si$_{3}$, Y$_{5}$Sn$_{3}$, Yb$_{5}$Sb$_{3}$, Zr$_{5}$Al$_{3}$, Zr$_{5}$Ga$_{3}$, Zr$_{5}$Ge$_{3}$, Zr$_{5}$Pb$_{3}$, Zr$_{5}$Pt$_{3}$, Zr$_{5}$Sb$_{3}$, Zr$_{5}$Si$_{3}$, Zr$_{5}$Sn$_{3}$, Cr$_{5-x-y}$Fe$_{x}$Nb$_{y}$Si$_{3}$, Mn$_{5-x}$Fe$_{x}$Si$_{3}$, Ti$_{5}$Ga$_{1.5}$Ge$_{1.5}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ | (4d) | Mn I |
$\mathbf{B_{2}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4d) | Mn I |
$\mathbf{B_{3}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ | (4d) | Mn I |
$\mathbf{B_{4}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4d) | Mn I |
$\mathbf{B_{5}}$ | = | $x_{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6g) | Mn II |
$\mathbf{B_{6}}$ | = | $x_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6g) | Mn II |
$\mathbf{B_{7}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6g) | Mn II |
$\mathbf{B_{8}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (6g) | Mn II |
$\mathbf{B_{9}}$ | = | $- x_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (6g) | Mn II |
$\mathbf{B_{10}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (6g) | Mn II |
$\mathbf{B_{11}}$ | = | $x_{3} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6g) | Si I |
$\mathbf{B_{12}}$ | = | $x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6g) | Si I |
$\mathbf{B_{13}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6g) | Si I |
$\mathbf{B_{14}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (6g) | Si I |
$\mathbf{B_{15}}$ | = | $- x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (6g) | Si I |
$\mathbf{B_{16}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (6g) | Si I |