Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A5B3_hP16_193_dg_g-001

This structure originally had the label A5B3_hP16_193_dg_g. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/AQ0J
or https://aflow.org/p/A5B3_hP16_193_dg_g-001
or PDF Version

Mavlyanovite (Mn$_{5}$Si$_{3}$, $D8_{8}$) Structure: A5B3_hP16_193_dg_g-001

Picture of Structure; Click for Big Picture
Prototype Mn$_{5}$Si$_{3}$
AFLOW prototype label A5B3_hP16_193_dg_g-001
Strukturbericht designation $D8_{8}$
Mineral name mavlyanovite
ICSD 24359
Pearson symbol hP16
Space group number 193
Space group symbol $P6_3/mcm$
AFLOW prototype command aflow --proto=A5B3_hP16_193_dg_g-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}$

Other compounds with this structure

Ce$_{5}$Ge$_{3}$,  Ce$_{5}$Pb$_{3}$,  Ce$_{5}$Sb$_{3}$,  Dy$_{5}$Ge$_{3}$,  Dy$_{5}$Sb$_{3}$,  Er$_{5}$Si$_{3}$,  Fe$_{5}$Si$_{3}$ (HT),  Gd$_{5}$Ge$_{3}$,  Gd$_{5}$Sb$_{3}$,  Hf$_{5}$Ga$_{3}$,  Hf$_{5}$Ge$_{3}$,  Hf$_{5}$Si$_{3}$,  Hf$_{5}$Sn$_{3}$,  Ho$_{5}$Sb$_{3}$,  Ho$_{5}$Sn$_{3}$,  La$_{5}$Ge$_{3}$,  La$_{5}$Pb$_{3}$,  La$_{5}$Sb$_{3}$,  Lu$_{5}$Si$_{3}$,  Mg$_{5}$Hg$_{3}$,  Mn$_{5}$Ge$_{3}$,  Mn$_{5}$Si$_{3}$,  Mo$_{5}$Si$_{3}$,  Nb$_{5}$Ge$_{3}$,  Nb$_{5}$Si$_{3}$,  Nd$_{5}$Sb$_{3}$,  Pr$_{5}$Sb$_{3}$,  Sc$_{5}$Ga$_{3}$,  Sc$_{5}$Ge$_{3}$,  Sc$_{5}$Pb$_{3}$,  Sc$_{5}$Si$_{3}$,  Sc$_{5}$Sn$_{3}$,  Ta$_{5}$Si$_{3}$,  Tb$_{5}$Sb$_{3}$,  Ti$_{5}$Ga$_{3}$,  Ti$_{5}$Ge$_{3}$,  Ti$_{5}$P$_{3}$,  Ti$_{5}$Si$_{3}$,  Ti$_{5}$Sn$_{3}$,  U$_{5}$Ge$_{3}$,  V$_{5}$Ga$_{3}$,  V$_{5}$Ge$_{3}$,  V$_{5}$Si$_{3}$,  W$_{5}$Si$_{3}$,  Y$_{5}$Ga$_{3}$,  Y$_{5}$Ge$_{3}$,  Y$_{5}$Pb$_{3}$,  Y$_{5}$Si$_{3}$,  Y$_{5}$Sn$_{3}$,  Yb$_{5}$Sb$_{3}$,  Zr$_{5}$Al$_{3}$,  Zr$_{5}$Ga$_{3}$,  Zr$_{5}$Ge$_{3}$,  Zr$_{5}$Pb$_{3}$,  Zr$_{5}$Pt$_{3}$,  Zr$_{5}$Sb$_{3}$,  Zr$_{5}$Si$_{3}$,  Zr$_{5}$Sn$_{3}$,  Cr$_{5-x-y}$Fe$_{x}$Nb$_{y}$Si$_{3}$,  Mn$_{5-x}$Fe$_{x}$Si$_{3}$,  Ti$_{5}$Ga$_{1.5}$Ge$_{1.5}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (4d) Mn I
$\mathbf{B_{2}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4d) Mn I
$\mathbf{B_{3}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (4d) Mn I
$\mathbf{B_{4}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4d) Mn I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6g) Mn II
$\mathbf{B_{6}}$ = $x_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6g) Mn II
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6g) Mn II
$\mathbf{B_{8}}$ = $- x_{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{2} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6g) Mn II
$\mathbf{B_{9}}$ = $- x_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{2} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6g) Mn II
$\mathbf{B_{10}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6g) Mn II
$\mathbf{B_{11}}$ = $x_{3} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6g) Si I
$\mathbf{B_{12}}$ = $x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6g) Si I
$\mathbf{B_{13}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6g) Si I
$\mathbf{B_{14}}$ = $- x_{3} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6g) Si I
$\mathbf{B_{15}}$ = $- x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6g) Si I
$\mathbf{B_{16}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6g) Si I

References

  • B. Aronson, A Note on the Compositions and Crystal Structures of MnB$_{2}$, Mn$_{3}$Si, Mn$_5$Si$_{3}$, and FeSi$_{2}$, Acta Chem. Scand. 14, 1414–1418 (1960), doi:10.3891/acta.chem.scand.14-1414.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A5B3_hP16_193_dg_g --params=$a,c/a,x_{2},x_{3}$

Species:

Running:

Output: