Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_hP4_186_ab-001

This structure originally had the label A_hP4_186_ab. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/F6SX
or https://aflow.org/p/A_hP4_186_ab-001
or PDF Version

Buckled Graphite Structure: A_hP4_186_ab-001

Picture of Structure; Click for Big Picture
Prototype C
AFLOW prototype label A_hP4_186_ab-001
Mineral name graphite
ICSD 31170
Pearson symbol hP4
Space group number 186
Space group symbol $P6_3mc$
AFLOW prototype command aflow --proto=A_hP4_186_ab-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}$

  • According to (Wyckoff, 1963), hexagonal graphite may be either flat, space group $P6_{3}/mmc$ #194 or buckled, space group $P6_{3}mc$ #186. If it is buckled, the buckling parameter is small, less than 1/20 of the ‘c’ parameter of the hexagonal unit cell. We will assign the $A9$ Strukturbericht designation to the unbuckled structure.
  • Experimentally, a rhombohedral ($R\overline{3}m$ #166) graphite structure is also observed.
  • There is no ICSD entry for (Hull, 1917). Instead we provide the ICSD entry for the somewhat later work of (Hassel, 1924). The two structures have similar volumes and $c/a$ values, but Hull's value of $z_{2}$=0.07143 is substantially larger than Hassel and Mark's value of 0.005. We show the former value to emphasize the buckling.
  • When $z_{2}=z_{1}$, this structure is equivalent to unbuckled ($A9$) hexagonal graphite.
  • Space group $P6_{3}mc$ #186 does not specify the origin of the $z$-axis. Here we chose $z_{1} = 0$ for the carbon (2a) site.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) C I
$\mathbf{B_{2}}$ = $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) C I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2b) C II
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) C II

References

Found in

  • R. G. W. Wyckoff, Crystal Structure, vol. 1 (Interscience, New York, London, Sydney, 1963).

Prototype Generator

aflow --proto=A_hP4_186_ab --params=$a,c/a,z_{1},z_{2}$

Species:

Running:

Output: