
Buckled Graphite Structure: A_hP4_186_ab-001

This structure originally had the label A_hP4_186_ab. Calls to that address will be redirected here.

Cite this page as: M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallo-graphic Prototypes: Part 1*, Comput. Mater. Sci. **136**, S1-828 (2017). doi: 10.1016/j.commatsci.2017.01.017

https://aflow.org/p/F6SX

 $https://aflow.org/p/A_hP4_186_ab-001$

Prototype C

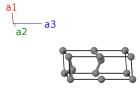
AFLOW prototype label A_hP4_186_ab-001

Mineral name graphite
ICSD 31170
Pearson symbol hP4
Space group number 186

Space group symbol $P6_3mc$

AFLOW prototype command aflow --proto=A_hP4_186_ab-001 --params= $a, c/a, z_1, z_2$

- According to (Wyckoff, 1963), hexagonal graphite may be either flat, space group $P6_3/mmc$ #194 or buckled, space group $P6_3mc$ #186. "If it is buckled, the buckling parameter is small, less than 1/20 of the 'c' parameter of the hexagonal unit cell." We will assign the A9 Strukturbericht designation to the unbuckled structure.
- Experimentally, a rhombohedral ($R\overline{3}m \# 166$) graphite structure is also observed.
- There is no ICSD entry for (Hull, 1917). Instead we provide the ICSD entry for the somewhat later work of (Hassel, 1924). The two structures have similar volumes and c/a values, but Hull's value of z_2 =0.07143 is substantially larger than Hassel and Mark's value of 0.005. We show the former value to emphasize the buckling.


- When $z_2 = z_1$, this structure is equivalent to unbuckled (A9) hexagonal graphite.
- Space group $P6_3mc$ #186 does not specify the origin of the z-axis. Here we chose $z_1=0$ for the carbon (2a) site.

Hexagonal primitive vectors

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c\,\hat{\mathbf{z}}$$

Basis vectors

		$ \begin{array}{c} {\rm Lattice} \\ {\rm coordinates} \end{array} $		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$z_1\mathbf{a}_3$	=	$cz_1\mathbf{\hat{z}}$	(2a)	CI
$\mathbf{B_2}$	=	$(z_1 + \frac{1}{2}) \; {f a}_3$	=	$c\left(z_1+rac{1}{2} ight)\mathbf{\hat{z}}$	(2a)	CI
$\mathbf{B_3}$	=	$\frac{1}{3}\mathbf{a}_1 + \frac{2}{3}\mathbf{a}_2 + z_2\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + cz_2\hat{\mathbf{z}}$	(2b)	C II
$\mathbf{B_4}$	=	$\frac{2}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2 + \left(z_2 + \frac{1}{2}\right)\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + c\left(z_2 + \frac{1}{2}\right)\hat{\mathbf{z}}$	(2b)	C II

References

- [1] A. W. Hull, A New Method of X-Ray Crystal Analysis, Phys. Rev. 10, 661–696 (1917), doi:10.1103/PhysRev.10.661.
- [2] O. Hassel and H. Mark, Über die Kristallstruktur des Graphits, Z. f. Physik 25, 317–337 (1924), doi:10.1007/BF01327534.

Found in

[1] R. G. W. Wyckoff, Crystal Structure, vol. 1 (Interscience, New York, London, Sydney, 1963).