AFLOW Prototype: ABC3_hP10_182_c_b_g-001
This structure originally had the label ABC3_hP10_182_c_b_g. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/6B26
or
https://aflow.org/p/ABC3_hP10_182_c_b_g-001
or
PDF Version
Prototype | ILiO$_{3}$ |
AFLOW prototype label | ABC3_hP10_182_c_b_g-001 |
Strukturbericht designation | $E2_{3}$ |
ICSD | 20012 |
Pearson symbol | hP10 |
Space group number | 182 |
Space group symbol | $P6_322$ |
AFLOW prototype command |
aflow --proto=ABC3_hP10_182_c_b_g-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}c \,\mathbf{\hat{z}}$ | (2b) | Li I |
$\mathbf{B_{2}}$ | = | $\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}c \,\mathbf{\hat{z}}$ | (2b) | Li I |
$\mathbf{B_{3}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (2c) | I I |
$\mathbf{B_{4}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (2c) | I I |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}$ | = | $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ | (6g) | O I |
$\mathbf{B_{6}}$ | = | $x_{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ | (6g) | O I |
$\mathbf{B_{7}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ | = | $- a x_{3} \,\mathbf{\hat{x}}$ | (6g) | O I |
$\mathbf{B_{8}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6g) | O I |
$\mathbf{B_{9}}$ | = | $- x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6g) | O I |
$\mathbf{B_{10}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6g) | O I |