$E 2_{3}\left(\mathrm{LiIO}_{3}\right)$ Structure (Obsolete):
ABC3_hP10_182_c_b_g-001
This structure originally had the label ABC3_hP10_182_c_b_g. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comput. Mater. Sci. 199, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.
${ }^{\circ} \mathrm{O}$

Prototype
AFLOW prototype label
Strukturbericht designation
ILiO_{3}
ABC3_hP10_182_c_b_g-001
$E 2_{3}$
ICSD
Pearson symbol
hP10
Space group number
182
Space group symbol
$P 6322$
AFLOW prototype command
aflow --proto=ABC3_hP10_182_c_b_g-001
--params $=a, c / a, x_{3}$

- LiIO_{3} is known to exist in three forms:
- α - LiIO_{3}, stable below 470 K :
- (Zachariasen, 1931) originally determined that the structure of α-LiIO ${ }_{3}$ was in space group $P 6_{3} 22$ \#182, which (Hermann, 1937) designated Strukturbericht $E 2_{3}$. (this structure)
- (Rosenzweig, 1966) subsequently determined that this structure was incorrect because of the small sample size, and determined that the true structure was in space group $P 6_{3} \# 173$.
- β - LiIO_{3}, stable from 573 K up to the melting point at 708 K .
- $\gamma-\mathrm{LiIO}_{3}$, stable between the α - and β-phases, with an orthorhombic structure in space group Pna2 $\# 33$.
- The ICSD entry is from (Butolin, 1975). If we can obtain a copy we will report on their research into this structure.

Hexagonal primitive vectors

$$
\begin{array}{ll}
\mathbf{a}_{\mathbf{1}} & =\frac{1}{2} a \hat{\mathbf{x}}-\frac{\sqrt{3}}{2} a \hat{\mathbf{y}} \\
\mathbf{a}_{\mathbf{2}} & =\frac{1}{2} a \hat{\mathbf{x}}+\frac{\sqrt{3}}{2} a \hat{\mathbf{y}} \\
\mathbf{a}_{\mathbf{3}} & =c \hat{\mathbf{z}}
\end{array}
$$

Basis vectors

	Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathrm{B}_{1}=$	$\frac{1}{4} \mathbf{a}_{3}$	$=$	$\frac{1}{4} c \hat{\mathbf{Z}}$	(2b)	Li I
$\mathrm{B}_{2}=$	$\frac{3}{4} \mathbf{a}_{3}$	$=$	$\frac{3}{4} c \hat{\mathbf{z}}$	(2b)	Li I
$\mathbf{B}_{3}=$	$\frac{1}{3} \mathbf{a}_{1}+\frac{2}{3} \mathbf{a}_{2}+\frac{1}{4} \mathbf{a}_{3}$	$=$	$\frac{1}{2} a \hat{\mathbf{x}}+\frac{\sqrt{3}}{6} a \hat{\mathbf{y}}+\frac{1}{4} c \hat{\mathbf{z}}$	(2c)	I I
B_{4}	$\frac{2}{3} \mathbf{a}_{1}+\frac{1}{3} \mathbf{a}_{2}+\frac{3}{4} \mathbf{a}_{3}$	$=$	$\frac{1}{2} a \hat{\mathbf{x}}-\frac{\sqrt{3}}{6} a \hat{\mathbf{y}}+\frac{3}{4} c \hat{\mathbf{z}}$	(2c)	I I
$\mathrm{B}_{5}=$	$x_{3} \mathbf{a}_{1}$	$=$	$\frac{1}{2} a x_{3} \hat{\mathbf{x}}-\frac{\sqrt{3}}{2} a x_{3} \hat{\mathbf{y}}$	(6g)	O I
B_{6}	$x_{3} \mathbf{a}_{2}$	$=$	$\frac{1}{2} a x_{3} \hat{\mathbf{x}}+\frac{\sqrt{3}}{2} a x_{3} \hat{\mathbf{y}}$	(6g)	O I
$\mathbf{B}_{7}=$	$-x_{3} \mathbf{a}_{1}-x_{3} \mathbf{a}_{2}$	$=$	$-a x_{3} \hat{\mathbf{x}}$	(6g)	O I
$\mathrm{B}_{8}=$	$-x_{3} \mathbf{a}_{1}+\frac{1}{2} \mathbf{a}_{3}$	$=$	$-\frac{1}{2} a x_{3} \hat{\mathbf{x}}+\frac{\sqrt{3}}{2} a x_{3} \hat{\mathbf{y}}+\frac{1}{2} c \hat{\mathbf{z}}$	(6g)	O I
$\mathbf{B}_{9}=$	$-x_{3} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$	$=$	$-\frac{1}{2} a x_{3} \hat{\mathbf{x}}-\frac{\sqrt{3}}{2} a x_{3} \hat{\mathbf{y}}+\frac{1}{2} c \hat{\mathbf{z}}$	(6g)	O I
$\mathbf{B}_{10}=$	$x_{3} \mathbf{a}_{1}+x_{3} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$	$=$	$a x_{3} \hat{\mathbf{x}}+\frac{1}{2} c \hat{\mathbf{z}}$	(6g)	O I

References

[1] W. H. Zachariasen and F. A. Barta, Crystal Structure of Lithium Iodate, Phys. Rev. 37, 1626-1630 (1931), doi 10.1103/PhysRev.37.1626
[2] C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928-1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
[3] S. A. Butolin, L. F. Belova, R. N. Samoylova, O. M. Kotenko, I. M. Dokuchaeva, and N. M. Ivanova, Optical and physicochemical properties of $\alpha \mathrm{LiIO}_{3}$ monocrystal, Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy 11, 862-865 (1975).

Found in

[1] A. Rosenzweig and B. Morosin, A reinvestigation of the crystal structure of LiIO_{3}, Acta Cryst. 20, 758-761 (1966), doi 10.1107/S0365110X66001804.

