AFLOW Prototype: ABC2_hP12_164_ad_bd_c2d-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/1TV2
or
https://aflow.org/p/ABC2_hP12_164_ad_bd_c2d-001
or
PDF Version
Prototype | AgBiSe$_{2}$ |
AFLOW prototype label | ABC2_hP12_164_ad_bd_c2d-001 |
ICSD | 26519 |
Pearson symbol | hP12 |
Space group number | 164 |
Space group symbol | $P\overline{3}m1$ |
AFLOW prototype command |
aflow --proto=ABC2_hP12_164_ad_bd_c2d-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}$ |
AgBiS$_{2}$, AgBiTe$_{2}$
Nasite and selenium on the
Clsite.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Ag I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (1b) | Bi I |
$\mathbf{B_{3}}$ | = | $z_{3} \, \mathbf{a}_{3}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (2c) | Se I |
$\mathbf{B_{4}}$ | = | $- z_{3} \, \mathbf{a}_{3}$ | = | $- c z_{3} \,\mathbf{\hat{z}}$ | (2c) | Se I |
$\mathbf{B_{5}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (2d) | Ag II |
$\mathbf{B_{6}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (2d) | Ag II |
$\mathbf{B_{7}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (2d) | Bi II |
$\mathbf{B_{8}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (2d) | Bi II |
$\mathbf{B_{9}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (2d) | Se II |
$\mathbf{B_{10}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (2d) | Se II |
$\mathbf{B_{11}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (2d) | Se III |
$\mathbf{B_{12}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (2d) | Se III |