
AgBiSe₂ Structure:

ABC2_hP12_164_ad_bd_c2d-001

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 4*. In preparation.

https://aflow.org/p/1TV2

https://aflow.org/p/ABC2_hP12_164_ad_bd_c2d-001

Prototype $AgBiSe_2$

AFLOW prototype label ABC2_hP12_164_ad_bd_c2d-001

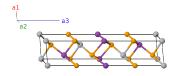
ICSD26519Pearson symbolhP12Space group number164Space group symbol $P\overline{3}m1$

AFLOW prototype command aflow --proto=ABC2_hP12_164_ad_bd_c2d-001

--params= $a, c/a, z_3, z_4, z_5, z_6, z_7$

Other compounds with this structure

AgBiS₂, AgBiTe₂


- This is the ground state of AgBiSe₂. According to the phase diagram in (Villars, 2018) this transforms into the rhombohedral α-NaFeO₂ structure at 365°C. (Geller, 1959) agree that this is a high-temperature state, but say that it exists between 120°C and 287°C. Above this temperature they say that AgBiSe₂ transforms into the NaCl (B1) structure, with silver and bismuth randomly placed on the "Na" site and selenium on the "Cl" site.
- (Geller, 1959) note that the trigonal ground state and the rhombohedral high-temperature state are very close together, with only small changes in the atomic coordinates needed to transform one into the other.

Trigonal (Hexagonal) primitive vectors

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c \, \hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	$\begin{array}{c} \text{Atom} \\ \text{type} \end{array}$
${\bf B_1}$	=	0	=	0	(1a)	Ag I
$\mathbf{B_2}$	=	$rac{1}{2}\mathbf{a}_3$	=	$rac{1}{2}c\mathbf{\hat{z}}$	(1b)	Bi I
${f B_3}$	=	$z_3{f a}_3$	=	$cz_3\mathbf{\hat{z}}$	(2c)	Se I
$\mathbf{B_4}$	=	$-z_3\mathbf{a}_3$	=	$-cz_3\mathbf{\hat{z}}$	(2c)	Se I
${f B_5}$	=	$\frac{1}{3}\mathbf{a}_1 + \frac{2}{3}\mathbf{a}_2 + z_4\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + cz_4\hat{\mathbf{z}}$	(2d)	Ag II
${f B_6}$	=	$\frac{2}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2 - z_4\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} - cz_4\hat{\mathbf{z}}$	(2d)	Ag II
$\mathbf{B_7}$	=	$\frac{1}{3}\mathbf{a}_1 + \frac{2}{3}\mathbf{a}_2 + z_5\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + cz_5\hat{\mathbf{z}}$	(2d)	Bi II
B_8	=	$\frac{2}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2 - z_5\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} - cz_5\hat{\mathbf{z}}$	(2d)	Bi II
${f B_9}$	=	$\frac{1}{3}\mathbf{a}_1 + \frac{2}{3}\mathbf{a}_2 + z_6\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + cz_6\hat{\mathbf{z}}$	(2d)	Se II
${\bf B_{10}}$	=	$\frac{2}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2 - z_6\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} - cz_6\hat{\mathbf{z}}$	(2d)	Se II
B_{11}	=	$\frac{1}{3}\mathbf{a}_1 + \frac{2}{3}\mathbf{a}_2 + z_7\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + cz_7\hat{\mathbf{z}}$	(2d)	Se III
$\mathbf{B_{12}}$	=	$\frac{2}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2 - z_7\mathbf{a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} - \frac{\sqrt{3}}{6}a\mathbf{\hat{y}} - cz_7\mathbf{\hat{z}}$	(2d)	Se III

References

[1] S. Geller and J. H. Wernick, Ternary semiconducting compounds with sodium chloride-like structure: $AgSbSe_2$, $AgSbTe_2$, $AgBiSe_2$, $AgBiSe_2$, Acta Cryst. **12**, 46–54 (1959), doi:10.1107/S0365110X59000135.

Found in

[1] P. Villars, H. Okamoto, and K. Cenzual, eds., ASM Alloy Phase Diagram Database (ASM International, 2018), chap. Silver-Bismuth-Selenium Ternary, Vertical Section (1966 Hirai T.). Copyright ©)2006-2018 ASM International.