Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB8C2_tI44_97_e_2k_cd-001

This structure originally had the label AB8C2_tI44_97_e_2k_cd. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/4HFE
or https://aflow.org/p/AB8C2_tI44_97_e_2k_cd-001
or PDF Version

Ta$_{2}$Se$_{8}$I Structure: AB8C2_tI44_97_e_2k_cd-001

Picture of Structure; Click for Big Picture
Prototype ISe$_{8}$Ta$_{2}$
AFLOW prototype label AB8C2_tI44_97_e_2k_cd-001
ICSD 35190
Pearson symbol tI44
Space group number 97
Space group symbol $I422$
AFLOW prototype command aflow --proto=AB8C2_tI44_97_e_2k_cd-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}$

  • The ICSD entry is from (Greissier, 1982).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (4c) Ta I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (4c) Ta I
$\mathbf{B_{3}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) Ta II
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) Ta II
$\mathbf{B_{5}}$ = $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ = $c z_{3} \,\mathbf{\hat{z}}$ (4e) I I
$\mathbf{B_{6}}$ = $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ = $- c z_{3} \,\mathbf{\hat{z}}$ (4e) I I
$\mathbf{B_{7}}$ = $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16k) Se I
$\mathbf{B_{8}}$ = $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16k) Se I
$\mathbf{B_{9}}$ = $\left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16k) Se I
$\mathbf{B_{10}}$ = $- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16k) Se I
$\mathbf{B_{11}}$ = $\left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16k) Se I
$\mathbf{B_{12}}$ = $- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16k) Se I
$\mathbf{B_{13}}$ = $\left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16k) Se I
$\mathbf{B_{14}}$ = $- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16k) Se I
$\mathbf{B_{15}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16k) Se II
$\mathbf{B_{16}}$ = $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16k) Se II
$\mathbf{B_{17}}$ = $\left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16k) Se II
$\mathbf{B_{18}}$ = $- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16k) Se II
$\mathbf{B_{19}}$ = $\left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (16k) Se II
$\mathbf{B_{20}}$ = $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (16k) Se II
$\mathbf{B_{21}}$ = $\left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (16k) Se II
$\mathbf{B_{22}}$ = $- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (16k) Se II

References

  • P. Gressier, A. Meerschaut, L. Guemas, J. Rouxel, and P. Monceau, Characterization of the new series of quasi one-dimensional compounds(MX$_{4}$)$_{n}$Y (M = Nb, Ta; X =S, Se; Y =Br, I), J. Solid State Chem. 51, 141–151 (1984), doi:10.1016/0022-4596(84)90327-X.
  • P. Gressier, L. Guemas, and A. Meerschaut, Preparation and structure of ditantalum iodide octaselenide, Ta$_{2}$ISe$_{8}$, Acta Crystallogr. Sect. B 38, 2877–2879 (1982), doi:10.1107/S0567740882010176.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=AB8C2_tI44_97_e_2k_cd --params=$a,c/a,z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5}$

Species:

Running:

Output: