Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB4_mP10_14_a_2e-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/L3ZV
or https://aflow.org/p/AB4_mP10_14_a_2e-001
or PDF Version

CdP$_{4}$ Structure: AB4_mP10_14_a_2e-001

Picture of Structure; Click for Big Picture
Prototype CdP$_{4}$
AFLOW prototype label AB4_mP10_14_a_2e-001
ICSD 25605
Pearson symbol mP10
Space group number 14
Space group symbol $P2_1/c$
AFLOW prototype command aflow --proto=AB4_mP10_14_a_2e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$

Other compounds with this structure

MgP$_{4}$,  OsP$_{4}$,  RuP$_{4}$


  • (Krebs, 1956) give distances in kX. We follow (Wood, 1947) and convert this to Ångstroms by multiplying their distances by 1.00202.
  • This is the low temperature form OsP$_{4}$ and RuP$_{4}$ (Flörke, 1982). For the high temperature form see the CrP$_{4}$ structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Cd I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Cd I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) P I
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{2} + c \left(z_{2} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) P I
$\mathbf{B_{5}}$ = $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) P I
$\mathbf{B_{6}}$ = $x_{2} \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{2} + c \left(z_{2} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) P I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) P II
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c \left(z_{3} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) P II
$\mathbf{B_{9}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) P II
$\mathbf{B_{10}}$ = $x_{3} \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{3} + c \left(z_{3} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) P II

References

  • H. Krebs, K.-H. Müller, and G. Zürn, Über kristallisierte Metallpolyphosphide. I. Darstellung und Struktur des CdP$_{4}$, Z. Anorganische und Allgemeine Chemie 285, 15–28 (1956), doi:10.1016/0022-5088(82)90210-7.
  • E. A. Wood, The Conversion Factor for kX Units to Angström Units, J. App. Phys. 18, 929–930 (1947), doi:10.1063/1.1697570.

Found in

  • U. Flörke and W. Jeitscho, Preparation and properties of new modifications of RuP$_{4}$ and OsP$_{4}$ with CdP$_{4}$-type structure, J. Less-Common Met. 86, 247–253 (1982), doi:10.1016/0022-5088(82)90210-7.

Prototype Generator

aflow --proto=AB4_mP10_14_a_2e --params=$a,b/a,c/a,\beta,x_{2},y_{2},z_{2},x_{3},y_{3},z_{3}$

Species:

Running:

Output: