AFLOW Prototype: AB2_hP6_194_b_f-001
This structure originally had the label AB2_hP6_194_b_f. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/21YK
or
https://aflow.org/p/AB2_hP6_194_b_f-001
or
PDF Version
Prototype | CaIn$_{2}$ |
AFLOW prototype label | AB2_hP6_194_b_f-001 |
ICSD | 619376 |
Pearson symbol | hP6 |
Space group number | 194 |
Space group symbol | $P6_3/mmc$ |
AFLOW prototype command |
aflow --proto=AB2_hP6_194_b_f-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}$ |
CaIn$_{2}$, EuIn$_{2}$, EuTl$_{2}$, SrIn$_{2}$, SrTl$_{2}$, YGa$_{2}$, YbIn$_{2}$
--params
) specified in their corresponding CIF files. Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}c \,\mathbf{\hat{z}}$ | (2b) | Ca I |
$\mathbf{B_{2}}$ | = | $\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}c \,\mathbf{\hat{z}}$ | (2b) | Ca I |
$\mathbf{B_{3}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (4f) | In I |
$\mathbf{B_{4}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4f) | In I |
$\mathbf{B_{5}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (4f) | In I |
$\mathbf{B_{6}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4f) | In I |