AFLOW Prototype: AB2_hP3_191_a_d-001
This structure originally had the label AB2_hP3_191_a_d. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/75K4
or
https://aflow.org/p/AB2_hP3_191_a_d-001
or
PDF Version
Prototype | AlB$_{2}$ |
AFLOW prototype label | AB2_hP3_191_a_d-001 |
Strukturbericht designation | $C32$ |
Mineral name | ω-phase |
ICSD | 99639 |
Pearson symbol | hP3 |
Space group number | 191 |
Space group symbol | $P6/mmm$ |
AFLOW prototype command |
aflow --proto=AB2_hP3_191_a_d-001
--params=$a, \allowbreak c/a$ |
AgB$_{2}$, AuB$_{2}$, BaGa$_{2}$, BaSi$_{2}$, Be$_{2}$Hf, Be$_{2}$Zr, CaGa$_{2}$, CrB$_{2}$, DyGa$_{2}$, ErB$_{2}$, ErGa$_{2}$, EuGa$_{2}$, GdGa$_{2}$, HfB$_{2}$, HgLa$_{2}$, HoB$_{2}$, HoGa$_{2}$, LaCu$_{2}$, LaGa$_{2}$, LuB$_{2}$, MgB$_{2}$, MnB$_{2}$, MoB$_{2}$, NaHg$_{2}$, NbB$_{2}$, NdGa$_{2}$, OsB$_{2}$, PrGa$_{2}$, PuB$_{2}$, PuB$_{2}$, RuB$_{2}$, ScB$_{2}$, SmGa$_{2}$, SrGa$_{2}$, TaB$_{2}$, TbB$_{2}$, TbGa$_{2}$, ThAg$_{2}$, ThAl$_{2}$, ThCd$_{2}$, ThCu$_{2}$, ThNi$_{2}$, ThZn$_{2}$, TiU2$_{2}$, TlB$_{2}$, UB$_{2}$, $\beta$-UGa$_{2}$, UHg$_{2}$, USi$_{2}$, UZr$_{2}$, VB$_{2}$, YGa$_{2}$, ZrB$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Al I |
$\mathbf{B_{2}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2d) | B I |
$\mathbf{B_{3}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2d) | B I |