Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2_hP3_191_a_d-001

This structure originally had the label AB2_hP3_191_a_d. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/75K4
or https://aflow.org/p/AB2_hP3_191_a_d-001
or PDF Version

Hexagonal ω ($C32$) Structure: AB2_hP3_191_a_d-001

Picture of Structure; Click for Big Picture
Prototype AlB$_{2}$
AFLOW prototype label AB2_hP3_191_a_d-001
Strukturbericht designation $C32$
Mineral name ω-phase
ICSD 99639
Pearson symbol hP3
Space group number 191
Space group symbol $P6/mmm$
AFLOW prototype command aflow --proto=AB2_hP3_191_a_d-001
--params=$a, \allowbreak c/a$

Other compounds with this structure

AgB$_{2}$,  AuB$_{2}$,  BaGa$_{2}$,  BaSi$_{2}$,  Be$_{2}$Hf,  Be$_{2}$Zr,  CaGa$_{2}$,  CrB$_{2}$,  DyGa$_{2}$,  ErB$_{2}$,  ErGa$_{2}$,  EuGa$_{2}$,  GdGa$_{2}$,  HfB$_{2}$,  HgLa$_{2}$,  HoB$_{2}$,  HoGa$_{2}$,  LaCu$_{2}$,  LaGa$_{2}$,  LuB$_{2}$,  MgB$_{2}$,  MnB$_{2}$,  MoB$_{2}$,  NaHg$_{2}$,  NbB$_{2}$,  NdGa$_{2}$,  OsB$_{2}$,  PrGa$_{2}$,  PuB$_{2}$,  PuB$_{2}$,  RuB$_{2}$,  ScB$_{2}$,  SmGa$_{2}$,  SrGa$_{2}$,  TaB$_{2}$,  TbB$_{2}$,  TbGa$_{2}$,  ThAg$_{2}$,  ThAl$_{2}$,  ThCd$_{2}$,  ThCu$_{2}$,  ThNi$_{2}$,  ThZn$_{2}$,  TiU2$_{2}$,  TlB$_{2}$,  UB$_{2}$,  $\beta$-UGa$_{2}$,  UHg$_{2}$,  USi$_{2}$,  UZr$_{2}$,  VB$_{2}$,  YGa$_{2}$,  ZrB$_{2}$


  • This is the hexagonal $\omega$ phase. There is also a trigonal $\omega$ (C6) phase. For more details about the $\omega$ phase and materials which form in the $\omega$ phase see (Sikka, 1982).
  • Many $\omega$ phase intermetallic alloys are disordered, we list some of the ordered structures here.
  • In this structure the B-B distance is smaller than the Al-B distance for every $c/a$ ratio.
  • If $c/a$ is small enough the structure looks like a set of inter-penetrating boron triangular planes and aluminium chains.
  • If $c/a = 1/\sqrt{3}$ the Al-Al distance along (001) is the same as the B-B distance in the plane, and the B-B distance in the (001) direction. This value 0.577 is close to the value $\sqrt{3/8} \, (≈ 0.612)$ where the trigonal $\omega$ phase can transform to the body-centered cubic (A2) lattice, which probably explains the close connection between the $\omega$ and bcc phases.
  • In the current sample (Burkhardt, 2004) the aluminum (1a) site has 10% vacancies.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Al I
$\mathbf{B_{2}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2d) B I
$\mathbf{B_{3}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2d) B I

References

  • U. Burkhardt, V. Gurin, F. Haarmann, H. Borrmann, and W. Schnelle, On the electronic and structural properties of aluminum diboride Al$_{0.9}$B$_2$, J. Solid State Chem. 177, 389–394 (2004), doi:10.1016/j.jssc.2002.12.001.

Found in


Prototype Generator

aflow --proto=AB2_hP3_191_a_d --params=$a,c/a$

Species:

Running:

Output: