Hexagonal ω (C32) Structure:
 AB2_hP3_191_a_d-001

This structure originally had the label AB2_hP3_191_a_d. Calls to that address will be redirected here.

Cite this page as: M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comput. Mater. Sci. 136, S1-828 (2017). doi: 10.1016/j.commatsci.2017.01.017

https://aflow.org/p/75K4
https://aflow.org/p/AB2_hP3_191_a_d-001

Other compounds with this structure

$\mathrm{AgB}_{2}, \mathrm{AuB}_{2}, \mathrm{BaGa}_{2}, \mathrm{BaSi}_{2}, \mathrm{Be}_{2} \mathrm{Hf}, \mathrm{Be}_{2} \mathrm{Zr}, \mathrm{CaGa}_{2}, \mathrm{CrB}_{2}, \mathrm{DyGa}_{2}, \mathrm{ErB}_{2}, \mathrm{ErGa}_{2}, \mathrm{EuGa}_{2}, \mathrm{GdGa}_{2}, \mathrm{HfB}_{2}, \mathrm{HgLa}_{2}, \mathrm{HoB}_{2}, \mathrm{HoGa}_{2}$, $\mathrm{LaCu}_{2}, \mathrm{LaGa}_{2}, \mathrm{LuB}_{2}, \mathrm{MgB}_{2}, \mathrm{MnB}_{2}, \mathrm{MoB}_{2}, \mathrm{NaHg}_{2}, \mathrm{NbB}_{2}, \mathrm{NdGa}_{2}, \mathrm{OsB}_{2}, \mathrm{PrGa}_{2}, \mathrm{PuB}_{2}, \mathrm{PuB}_{2}, \mathrm{RuB}_{2}, \mathrm{ScB}_{2}, \mathrm{SmGa}_{2}, \mathrm{SrGa}_{2}$, $\mathrm{TaB}_{2}, \mathrm{TbB}_{2}, \mathrm{TbGa}_{2}, \mathrm{ThAg}_{2}, \mathrm{ThAl}_{2}, \mathrm{ThCd}_{2}, \mathrm{ThCu}_{2}, \mathrm{ThNi}_{2}, \mathrm{ThZn}_{2}, \mathrm{TiU}_{2}, \mathrm{TlB}_{2}, \mathrm{UB}_{2}, \beta-\mathrm{UGa}_{2}, \mathrm{UHg}_{2}, \mathrm{USi}_{2}, \mathrm{UZr}_{2}, \mathrm{VB}_{2}$, $\mathrm{YGa}_{2}, \mathrm{ZrB}_{2}$

- This is the hexagonal ω phase. There is also a trigonal ω (C6) phase. For more details about the ω phase and materials which form in the ω phase see (Sikka, 1982).
- Many ω phase intermetallic alloys are disordered, we list some of the ordered structures here.
- In this structure the B-B distance is smaller than the Al-B distance for every c / a ratio.
- If c / a is small enough the structure looks like a set of inter-penetrating boron triangular planes and aluminium chains.
- If $c / a=1 / \sqrt{3}$ the $\mathrm{Al}-\mathrm{Al}$ distance along (001) is the same as the B-B distance in the plane, and the B-B distance in the (001) direction. This value 0.577 is close to the value $\sqrt{3 / 8}(\approx 0.612)$ where the trigonal ω phase can transform to the body-centered cubic (A2) lattice, which probably explains the close connection between the ω and bcc phases.
- In the current sample (Burkhardt, 2004) the aluminum (1a) site has 10% vacancies.

Hexagonal primitive vectors

$$
\begin{aligned}
& \mathbf{a}_{\mathbf{1}}=\frac{1}{2} a \hat{\mathbf{x}}-\frac{\sqrt{3}}{2} a \hat{\mathbf{y}} \\
& \mathbf{a}_{2}= \\
& \mathbf{a}_{3} a \hat{\mathbf{x}}+\frac{\sqrt{3}}{2} a \hat{\mathbf{y}} \\
& \mathbf{a}_{3}
\end{aligned}
$$

Basis vectors

	Lattice coordinates	Cartesian coordinates	Wyckoff position	Atom type	
$\mathbf{B}_{\mathbf{1}}=$	0	0	$(1 a)$	Al I	
$\mathbf{B}_{\mathbf{2}}=$	$\frac{1}{3} \mathbf{a}_{1}+\frac{2}{3} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$	$=$	$\frac{1}{2} a \hat{\mathbf{x}}+\frac{\sqrt{3}}{6} a \hat{\mathbf{y}}+\frac{1}{2} c \hat{\mathbf{z}}$	$(2 \mathrm{~d})$	B I
$\mathbf{B}_{\mathbf{3}}=$	$\frac{2}{3} \mathbf{a}_{1}+\frac{1}{3} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$	$=$	$\frac{1}{2} a \hat{\mathbf{x}}-\frac{\sqrt{3}}{6} a \hat{\mathbf{y}}+\frac{1}{2} c \hat{\mathbf{z}}$	$(2 \mathrm{~d})$	B I

References

[1] U. Burkhardt, V. Gurin, F. Haarmann, H. Borrmann, and W. Schnelle, On the electronic and structural properties of aluminum diboride $A l_{0.9} B_{2}$, J. Solid State Chem. 177, 389-394 (2004), doi 10.1016/j.jssc.2002.12.001.

Found in

[1] S. K. Sikka, Y. K. Vohra, and R. Chidambaram, Omega Phase in Materials, Prog. Mater. Sci. 27, 245-310 (1982), doi 10.1016/0079-6425(82)90002-0.

