Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A9BC2_hP12_191_fm_a_c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/CSJ8
or https://aflow.org/p/A9BC2_hP12_191_fm_a_c-001
or PDF Version

BaFe$_{2}$Al$_{9}$ Structure: A9BC2_hP12_191_fm_a_c-001

Picture of Structure; Click for Big Picture
Prototype Al$_{9}$BaFe$_{2}$
AFLOW prototype label A9BC2_hP12_191_fm_a_c-001
ICSD 57518
Pearson symbol hP12
Space group number 191
Space group symbol $P6/mmm$
AFLOW prototype command aflow --proto=A9BC2_hP12_191_fm_a_c-001
--params=$a, \allowbreak c/a, \allowbreak x_{4}$

Other compounds with this structure

BaFe$_{2}$Al$_{9}$,  BaIr$_{2}$In$_{9}$,  BaNi$_{2}$Al$_{9}$,  CaCo$_{2}$Al$_{9}$,  SrCo$_{2}$Al$_{9}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Ba I
$\mathbf{B_{2}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (2c) Fe I
$\mathbf{B_{3}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (2c) Fe I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (3f) Al I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (3f) Al I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (3f) Al I
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (6m) Al II
$\mathbf{B_{8}}$ = $- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (6m) Al II
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (6m) Al II
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}- 2 x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (6m) Al II
$\mathbf{B_{11}}$ = $2 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (6m) Al II
$\mathbf{B_{12}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (6m) Al II

References

  • K. Turban and H. Schäfer, Zur kenntnis des BaFe$_{2}$Al$_{9}$-strukturtyps: Ternäre aluminide at$_{2}$Al$_{9}$ MIT A = Ba, Sr und T = Fe, Co, Ni, J. Less-Common Met. 40, 91–96 (1975), doi:10.1016/0022-5088(75)90184-8.

Found in

  • R. E. Gladyshevskii, K. Cenzual, and E. Parthé, Y$_{2}$Co$_{3}$Al$_{9}$ with Y$_{2}$Co$_{3}$Ga$_{9}$ type structure: an intergrowth of CsCl- and Th$_{3}$Pd$_{5}$-type slabs, J. Alloys Compd. 182, 165–170 (1992), doi:10.1016/0925-8388(92)90584-V.

Prototype Generator

aflow --proto=A9BC2_hP12_191_fm_a_c --params=$a,c/a,x_{4}$

Species:

Running:

Output: