Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A8B3C2_hR13_166_ch_e_c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/799E
or https://aflow.org/p/A8B3C2_hR13_166_ch_e_c-001
or PDF Version

Na$_{2}$Mn$_{3}$Cl$_{8}$ Structure: A8B3C2_hR13_166_ch_e_c-001

Picture of Structure; Click for Big Picture
Prototype Cl$_{8}$Mn$_{3}$Na$_{2}$
AFLOW prototype label A8B3C2_hR13_166_ch_e_c-001
ICSD 1846
Pearson symbol hR13
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A8B3C2_hR13_166_ch_e_c-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{4}, \allowbreak z_{4}$

Other compounds with this structure

Ca$_{2}$Pt$_{3}$O$_{8}$,  Na$_{2}$Cd$_{3}$Cl$_{8}$,  Na$_{2}$Fe$_{3}$Cl$_{8}$,  Na$_{2}$Mg$_{3}$Cl$_{8}$,  $\alpha$-Na$_{2}$Ti$_{3}$Cl$_{8}$


  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $c x_{1} \,\mathbf{\hat{z}}$ (2c) Cl I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $- c x_{1} \,\mathbf{\hat{z}}$ (2c) Cl I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (2c) Na I
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- c x_{2} \,\mathbf{\hat{z}}$ (2c) Na I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3e) Mn I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3e) Mn I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3e) Mn I
$\mathbf{B_{8}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) Cl II
$\mathbf{B_{9}}$ = $z_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) Cl II
$\mathbf{B_{10}}$ = $x_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) Cl II
$\mathbf{B_{11}}$ = $- z_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) Cl II
$\mathbf{B_{12}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) Cl II
$\mathbf{B_{13}}$ = $- x_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) Cl II

References

  • C. J. J. van Loon and D. J. W. Ijdo, The crystal structure of Na$_{6}$MnCl$_{8}$ and Na$_{2}$Mn$_{3}$Cl$_{8}$ and some isostructural compounds, Acta Crystallogr. Sect. B 31, 770–773 (1975), doi:10.1107/S0567740875003779.

Prototype Generator

aflow --proto=A8B3C2_hR13_166_ch_e_c --params=$a,c/a,x_{1},x_{2},x_{4},z_{4}$

Species:

Running:

Output: