Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A7B_hP24_187_ah2j2kn_j-001

This structure originally had the label A7B_hP24_187_ai2j2kn_j. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/BZC9
or https://aflow.org/p/A7B_hP24_187_ah2j2kn_j-001
or PDF Version

Cs$_{7}$O Structure: A7B_hP24_187_ah2j2kn_j-001

Picture of Structure; Click for Big Picture
Prototype Cs$_{7}$O
AFLOW prototype label A7B_hP24_187_ah2j2kn_j-001
ICSD 111
Pearson symbol hP24
Space group number 187
Space group symbol $P\overline{6}m2$
AFLOW prototype command aflow --proto=A7B_hP24_187_ah2j2kn_j-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak z_{8}$

  • This structure is composed of Cs$_{11}$O$_{3}$ molecules, similar to the building blocks of the Cs$_{11}$O$_{3}$ structure, interlaced with cesium atoms which have approximately the same spacing as in bcc-Cs.
  • Lattice constant data was given at 150°C, while the atomic positions were given at 175°C.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Cs I
$\mathbf{B_{2}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2h) Cs II
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (2h) Cs II
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- \sqrt{3}a x_{3} \,\mathbf{\hat{y}}$ (3j) Cs III
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}$ = $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ (3j) Cs III
$\mathbf{B_{6}}$ = $- 2 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ (3j) Cs III
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $- \sqrt{3}a x_{4} \,\mathbf{\hat{y}}$ (3j) Cs IV
$\mathbf{B_{8}}$ = $x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ (3j) Cs IV
$\mathbf{B_{9}}$ = $- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ (3j) Cs IV
$\mathbf{B_{10}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ = $- \sqrt{3}a x_{5} \,\mathbf{\hat{y}}$ (3j) O I
$\mathbf{B_{11}}$ = $x_{5} \, \mathbf{a}_{1}+2 x_{5} \, \mathbf{a}_{2}$ = $\frac{3}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}$ (3j) O I
$\mathbf{B_{12}}$ = $- 2 x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ = $- \frac{3}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}$ (3j) O I
$\mathbf{B_{13}}$ = $x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Cs V
$\mathbf{B_{14}}$ = $x_{6} \, \mathbf{a}_{1}+2 x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Cs V
$\mathbf{B_{15}}$ = $- 2 x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Cs V
$\mathbf{B_{16}}$ = $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Cs VI
$\mathbf{B_{17}}$ = $x_{7} \, \mathbf{a}_{1}+2 x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{7} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Cs VI
$\mathbf{B_{18}}$ = $- 2 x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{7} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Cs VI
$\mathbf{B_{19}}$ = $x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (6n) Cs VII
$\mathbf{B_{20}}$ = $x_{8} \, \mathbf{a}_{1}+2 x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{8} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (6n) Cs VII
$\mathbf{B_{21}}$ = $- 2 x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{8} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (6n) Cs VII
$\mathbf{B_{22}}$ = $x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (6n) Cs VII
$\mathbf{B_{23}}$ = $x_{8} \, \mathbf{a}_{1}+2 x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{8} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (6n) Cs VII
$\mathbf{B_{24}}$ = $- 2 x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{8} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (6n) Cs VII

References

  • A. Simon, Über Alkalimetall‐Suboxide. VII. Das metallreichste Cäsiumoxid—Cs$_{7}$O, Z. Anorganische und Allgemeine Chemie 422, 208–218 (1976), doi:10.1002/zaac.19764220303.

Found in

  • T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, eds., Binary Alloy Phase Diagrams, vol. 2 (ASM International, Materials Park, Ohio, USA, 1990), 2$^n$$^d$ edn. Cd-Ce to Hf-Rb.

Prototype Generator

aflow --proto=A7B_hP24_187_ah2j2kn_j --params=$a,c/a,z_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8},z_{8}$

Species:

Running:

Output: