Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A7B3C3_hP26_186_3a4b_2ab_a2b-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/JALT
or https://aflow.org/p/A7B3C3_hP26_186_3a4b_2ab_a2b-001
or PDF Version

Al$_{7}$C$_{3}$N$_{3}$ Structure: A7B3C3_hP26_186_3a4b_2ab_a2b-001

Picture of Structure; Click for Big Picture
Prototype Al$_{7}$C$_{3}$N$_{3}$
AFLOW prototype label A7B3C3_hP26_186_3a4b_2ab_a2b-001
ICSD 14400
Pearson symbol hP26
Space group number 186
Space group symbol $P6_3mc$
AFLOW prototype command aflow --proto=A7B3C3_hP26_186_3a4b_2ab_a2b-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}, \allowbreak z_{9}, \allowbreak z_{10}, \allowbreak z_{11}, \allowbreak z_{12}, \allowbreak z_{13}$

Other compounds with this structure

(Al$_{7-x}$Si$_{x}$)(O$_{y}$C$_{z}$N$_{6-y-z}$)


  • (Jeffrey, 1963) place the structure in space group $P6_{3}mc$ #186, but give the structure in a pseudo-hexagonal cell in space group $Cmc2_{1}$ #36. With the help of FINDSYM we converted this to the hexagonal structure.
  • (Jeffrey, 1966) uses the $P6_{3}mc$ space group exclusively, and we list the ICSD entry associated with that paper.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) Al I
$\mathbf{B_{2}}$ = $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Al I
$\mathbf{B_{3}}$ = $z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (2a) Al II
$\mathbf{B_{4}}$ = $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Al II
$\mathbf{B_{5}}$ = $z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (2a) Al III
$\mathbf{B_{6}}$ = $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Al III
$\mathbf{B_{7}}$ = $z_{4} \, \mathbf{a}_{3}$ = $c z_{4} \,\mathbf{\hat{z}}$ (2a) C I
$\mathbf{B_{8}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) C I
$\mathbf{B_{9}}$ = $z_{5} \, \mathbf{a}_{3}$ = $c z_{5} \,\mathbf{\hat{z}}$ (2a) C II
$\mathbf{B_{10}}$ = $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) C II
$\mathbf{B_{11}}$ = $z_{6} \, \mathbf{a}_{3}$ = $c z_{6} \,\mathbf{\hat{z}}$ (2a) Ni I
$\mathbf{B_{12}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Ni I
$\mathbf{B_{13}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (2b) Al IV
$\mathbf{B_{14}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Al IV
$\mathbf{B_{15}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (2b) Al V
$\mathbf{B_{16}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Al V
$\mathbf{B_{17}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (2b) Al VI
$\mathbf{B_{18}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Al VI
$\mathbf{B_{19}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (2b) Al VII
$\mathbf{B_{20}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Al VII
$\mathbf{B_{21}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (2b) C III
$\mathbf{B_{22}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) C III
$\mathbf{B_{23}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (2b) Ni II
$\mathbf{B_{24}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Ni II
$\mathbf{B_{25}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (2b) Ni III
$\mathbf{B_{26}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Ni III

References

Found in

  • D. Urushihara, M. Kaga, T. Asaka, H. Nakano, and K. Fukuda, Synthesis and structural characterization of Al$_{7}$C$_{3}$N$_{3}$-homeotypic aluminum silicon oxycarbonitride, (Al$_{7-x}$Si$_{x}$)(O$_{y}$C$_{z}$N$_{6-y-z}$) ($x \sim 1.2$, $y \sim 1.0$ and $z \sim 3.5$), J. Solid State Chem. 184, 2278–2284 (2011), doi:10.1016/j.jssc.2011.06.030.

Prototype Generator

aflow --proto=A7B3C3_hP26_186_3a4b_2ab_a2b --params=$a,c/a,z_{1},z_{2},z_{3},z_{4},z_{5},z_{6},z_{7},z_{8},z_{9},z_{10},z_{11},z_{12},z_{13}$

Species:

Running:

Output: