Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A6B2C_hP9_189_fg_c_b-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/XTDJ
or https://aflow.org/p/A6B2C_hP9_189_fg_c_b-001
or PDF Version

$\beta_{1}$-K$_{2}$UF$_{6}$ Structure: A6B2C_hP9_189_fg_c_b-001

Picture of Structure; Click for Big Picture
Prototype F$_{6}$K$_{2}$U
AFLOW prototype label A6B2C_hP9_189_fg_c_b-001
ICSD 26193
Pearson symbol hP9
Space group number 189
Space group symbol $P\overline{6}2m$
AFLOW prototype command aflow --proto=A6B2C_hP9_189_fg_c_b-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}$

Other compounds with this structure

K$_{2}$CeF$_{6}$,  K$_{2}$ThF$_{6}$,  $\delta$-Na$_{2}$UF$_{6}$



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (1b) U I
$\mathbf{B_{2}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (2c) K I
$\mathbf{B_{3}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (2c) K I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}$ = $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ (3f) F I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ (3f) F I
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}$ (3f) F I
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3g) F II
$\mathbf{B_{8}}$ = $x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3g) F II
$\mathbf{B_{9}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3g) F II

References

  • G. Brunton, Refinement of the crystal structure of $\beta_{1}$-K$_{2}$UF$_{6}$, Acta Crystallogr. Sect. B 25, 2163–2164 (1969), doi:10.1107/S0567740869005310.

Found in

  • A. Grzechnik, C. C. Underwood, J. W. Kolis, and K. Friese, Crystal structures and stability of K$_{2}$ThF$_{6}$ and K$_{7}$Th$_{6}$F$_{31}$ on compression, J. Fluor. Chem. 150, 8–13 (2013), doi:10.1016/j.jfluchem.2013.02.024.

Prototype Generator

aflow --proto=A6B2C_hP9_189_fg_c_b --params=$a,c/a,x_{3},x_{4}$

Species:

Running:

Output: