Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A5B21C24D12_hR62_166_a2c_ehi_fg2h_i-001

This structure originally had the label A5B21C24D12_hR62_166_a2c_ehi_fg2h_i. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/2K92
or https://aflow.org/p/A5B21C24D12_hR62_166_a2c_ehi_fg2h_i-001
or PDF Version

Chabazite (Ca$_{1.4}$Sr$_{0.3}$Al$_{3.8}$Si$_{8.3}$O$_{24}\cdot$13H$_{2}$O, $S3_4$ (I)) Structure: A5B21C24D12_hR62_166_a2c_ehi_fg2h_i-001

Picture of Structure; Click for Big Picture
Prototype Al$_{3.8}$Ca$_{1.4}$H$_{26}$O$_{37}$Si$_{8.3}$Sr$_{0.3}$
AFLOW prototype label A5B21C24D12_hR62_166_a2c_ehi_fg2h_i-001
Strukturbericht designation $S3_{4}$(I)
Mineral name chabazite
ICSD 32553
Pearson symbol hR62
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A5B21C24D12_hR62_166_a2c_ehi_fg2h_i-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}$

  • The structure given here, from (Calligaris, 1982), has substantially the same Wyckoff positions as the structure designated $S3_{4}$ by (Gottfried, 1937). The largest change is the splitting of the calcium site from one stoichiometric (2c) site to three partially filled sites, one (1a) and two (2c).
  • (Calligaris, 1982) did not give the exact positions of the water molecules, so we use the positions given by (Downs, 2003). However, this leaves us with only 7.7 water molecules per formula unit, rather than the 13 claimed by (Calligaris, 1982).
  • Only the oxygen sites are fully occupied. For the remaining sites, according to (Downs, 2003),
    • The (1a) site is 9.06% Ca and 1.94% Sr, with the remaining sites vacant.
    • The first (2c) site is 43.65% Ca and 9.35% Sr.
    • The second (2c) site is 19.76% Ca and 4.24% Sr.
    • The (3e) H$_{2}$O site is only occupied by a water molecule 50% of the time.
    • The (6h) H$_{2}$O site is only occupied 57% of the time.
    • The (12h) H$_{2}$O site is only occupied 23% of the time.
    • The remaining (12h) site is 69% Si and 31% Al.
  • (Gottfried, 1937) gave chabazite the Strukturbericht designation $S3_{4}$. However, (Gottfried, 1940) designated catapleiite, Na$_{2}$ZrSi$_{3}$O$_{9}·2H$_{2}$O as Strukturbericht $S3_{4}$. We distinguish between the two cases by using $S3_{4}$(I) to designate chabazite and $S3_{4}$(II) to designate catapleiite.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Ca I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (2c) Ca II
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- c x_{2} \,\mathbf{\hat{z}}$ (2c) Ca II
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (2c) Ca III
$\mathbf{B_{5}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- c x_{3} \,\mathbf{\hat{z}}$ (2c) Ca III
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3e) H I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3e) H I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3e) H I
$\mathbf{B_{9}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ = $\frac{1}{2}a x_{5} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}$ (6f) O I
$\mathbf{B_{10}}$ = $x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}$ (6f) O I
$\mathbf{B_{11}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}$ (6f) O I
$\mathbf{B_{12}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}$ = $- \frac{1}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}$ (6f) O I
$\mathbf{B_{13}}$ = $- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a x_{5} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}$ (6f) O I
$\mathbf{B_{14}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}$ (6f) O I
$\mathbf{B_{15}}$ = $x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \left(2 x_{6} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{12}a \left(6 x_{6} + 1\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (6g) O II
$\mathbf{B_{16}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \left(2 x_{6} + 1\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{12}a \left(6 x_{6} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (6g) O II
$\mathbf{B_{17}}$ = $- x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (6g) O II
$\mathbf{B_{18}}$ = $- x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \left(2 x_{6} + 1\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{12}a \left(6 x_{6} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (6g) O II
$\mathbf{B_{19}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \left(2 x_{6} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{12}a \left(6 x_{6} + 1\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (6g) O II
$\mathbf{B_{20}}$ = $x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (6g) O II
$\mathbf{B_{21}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) H II
$\mathbf{B_{22}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) H II
$\mathbf{B_{23}}$ = $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) H II
$\mathbf{B_{24}}$ = $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) H II
$\mathbf{B_{25}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) H II
$\mathbf{B_{26}}$ = $- x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) H II
$\mathbf{B_{27}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6h) O III
$\mathbf{B_{28}}$ = $z_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6h) O III
$\mathbf{B_{29}}$ = $x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6h) O III
$\mathbf{B_{30}}$ = $- z_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6h) O III
$\mathbf{B_{31}}$ = $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6h) O III
$\mathbf{B_{32}}$ = $- x_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6h) O III
$\mathbf{B_{33}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6h) O IV
$\mathbf{B_{34}}$ = $z_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6h) O IV
$\mathbf{B_{35}}$ = $x_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6h) O IV
$\mathbf{B_{36}}$ = $- z_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6h) O IV
$\mathbf{B_{37}}$ = $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6h) O IV
$\mathbf{B_{38}}$ = $- x_{9} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6h) O IV
$\mathbf{B_{39}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{10} - 2 y_{10} + z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (12i) H III
$\mathbf{B_{40}}$ = $z_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+y_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{10} - z_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{10} - y_{10} - z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (12i) H III
$\mathbf{B_{41}}$ = $y_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{10} + y_{10} - 2 z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (12i) H III
$\mathbf{B_{42}}$ = $- z_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{10} - 2 y_{10} + z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (12i) H III
$\mathbf{B_{43}}$ = $- y_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{10} - z_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{10} - y_{10} - z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (12i) H III
$\mathbf{B_{44}}$ = $- x_{10} \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{2}- y_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{10} + y_{10} - 2 z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (12i) H III
$\mathbf{B_{45}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{10} - 2 y_{10} + z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (12i) H III
$\mathbf{B_{46}}$ = $- z_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- y_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{10} - z_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{10} - y_{10} - z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (12i) H III
$\mathbf{B_{47}}$ = $- y_{10} \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{10} + y_{10} - 2 z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (12i) H III
$\mathbf{B_{48}}$ = $z_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{10} - 2 y_{10} + z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (12i) H III
$\mathbf{B_{49}}$ = $y_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{10} - z_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{10} - y_{10} - z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (12i) H III
$\mathbf{B_{50}}$ = $x_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+y_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{10} + y_{10} - 2 z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (12i) H III
$\mathbf{B_{51}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{11} - 2 y_{11} + z_{11}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (12i) Si I
$\mathbf{B_{52}}$ = $z_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+y_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{11} - z_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{11} - y_{11} - z_{11}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (12i) Si I
$\mathbf{B_{53}}$ = $y_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{11} + y_{11} - 2 z_{11}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (12i) Si I
$\mathbf{B_{54}}$ = $- z_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- x_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{11} - 2 y_{11} + z_{11}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (12i) Si I
$\mathbf{B_{55}}$ = $- y_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{11} - z_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{11} - y_{11} - z_{11}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (12i) Si I
$\mathbf{B_{56}}$ = $- x_{11} \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{2}- y_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{11} + y_{11} - 2 z_{11}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (12i) Si I
$\mathbf{B_{57}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{11} - 2 y_{11} + z_{11}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (12i) Si I
$\mathbf{B_{58}}$ = $- z_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- y_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{11} - z_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{11} - y_{11} - z_{11}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (12i) Si I
$\mathbf{B_{59}}$ = $- y_{11} \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{2}- x_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{11} + y_{11} - 2 z_{11}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (12i) Si I
$\mathbf{B_{60}}$ = $z_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{11} - 2 y_{11} + z_{11}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (12i) Si I
$\mathbf{B_{61}}$ = $y_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{11} - z_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{11} - y_{11} - z_{11}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (12i) Si I
$\mathbf{B_{62}}$ = $x_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}+y_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} - y_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{11} + y_{11} - 2 z_{11}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{11} + y_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (12i) Si I

References

  • M. Calligaris, G. Nardin, L. Randaccio, and P. C. Chiaramonti, Cationā€site location in a natural chabazite, Acta Crystallogr. Sect. B 38, 602–605 (1982), doi:10.1107/S0567740882003483.
  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).
  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933-1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
  • C. Gottfried, ed., Strukturbericht Band V 1937 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1940).

Prototype Generator

aflow --proto=A5B21C24D12_hR62_166_a2c_ehi_fg2h_i --params=$a,c/a,x_{2},x_{3},x_{5},x_{6},x_{7},z_{7},x_{8},z_{8},x_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11}$

Species:

Running:

Output: