Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B2C9D3E_hP36_194_g_f_hk_h_a-001

This structure originally had the label A3B2C9D3E_hP36_194_g_f_hk_h_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/6TN8
or https://aflow.org/p/A3B2C9D3E_hP36_194_g_f_hk_h_a-001
or PDF Version

$S3_{4}$(II) (Catapleiite, Na$_{2}$Zr(SiO$_{3}$)$_{3} \cdot$H$_{2}$O) Structure (Obsolete): A3B2C9D3E_hP36_194_g_f_hk_h_a-001

Picture of Structure; Click for Big Picture
Prototype H$_{2}$Na$_{2}$O$_{9}$Si$_{2}$Zr
AFLOW prototype label A3B2C9D3E_hP36_194_g_f_hk_h_a-001
Strukturbericht designation $S3_{4}$(II)
Mineral name catapleiite
ICSD none
Pearson symbol hP36
Space group number 194
Space group symbol $P6_3/mmc$
AFLOW prototype command aflow --proto=A3B2C9D3E_hP36_194_g_f_hk_h_a-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak z_{6}$

  • This hexagonal structure has been superseded by the monoclinic structure of (Ilyushin, 1981). We present it here for historical interest.
  • We were unable to procure the original reference, so we use the data provided by (Gottfried, 1937).
  • Four of the (6g) sites are randomly occupied by water molecules.
  • (Gottfried, 1937) originally gave the Strukturbericht designation $S3_{4}$ to chabazite, but (Gottfried, 1940) gave it to this structure of catapleiite. We distinguish between the two cases by using $S3_{4}$(I) to designate chabazite and $S3_{4}$(II) to designate catapleiite.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Zr I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) Zr I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (4f) Na I
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Na I
$\mathbf{B_{5}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (4f) Na I
$\mathbf{B_{6}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Na I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (6g) H I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (6g) H I
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (6g) H I
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (6g) H I
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (6g) H I
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (6g) H I
$\mathbf{B_{13}}$ = $x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) O I
$\mathbf{B_{14}}$ = $- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) O I
$\mathbf{B_{15}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) O I
$\mathbf{B_{16}}$ = $- x_{4} \, \mathbf{a}_{1}- 2 x_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) O I
$\mathbf{B_{17}}$ = $2 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) O I
$\mathbf{B_{18}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) O I
$\mathbf{B_{19}}$ = $x_{5} \, \mathbf{a}_{1}+2 x_{5} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Si I
$\mathbf{B_{20}}$ = $- 2 x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Si I
$\mathbf{B_{21}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Si I
$\mathbf{B_{22}}$ = $- x_{5} \, \mathbf{a}_{1}- 2 x_{5} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{5} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Si I
$\mathbf{B_{23}}$ = $2 x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{5} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Si I
$\mathbf{B_{24}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{5} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Si I
$\mathbf{B_{25}}$ = $x_{6} \, \mathbf{a}_{1}+2 x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (12k) O II
$\mathbf{B_{26}}$ = $- 2 x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (12k) O II
$\mathbf{B_{27}}$ = $x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (12k) O II
$\mathbf{B_{28}}$ = $- x_{6} \, \mathbf{a}_{1}- 2 x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{6} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O II
$\mathbf{B_{29}}$ = $2 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{6} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O II
$\mathbf{B_{30}}$ = $- x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O II
$\mathbf{B_{31}}$ = $2 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{6} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (12k) O II
$\mathbf{B_{32}}$ = $- x_{6} \, \mathbf{a}_{1}- 2 x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{6} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (12k) O II
$\mathbf{B_{33}}$ = $- x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (12k) O II
$\mathbf{B_{34}}$ = $- 2 x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O II
$\mathbf{B_{35}}$ = $x_{6} \, \mathbf{a}_{1}+2 x_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O II
$\mathbf{B_{36}}$ = $x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12k) O II

References

  • B. Brunowski, Die Struktur des Katapleits, Acta physicochim. USSR 5, 863–892 (1936).
  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933-1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).

Found in

  • C. Gottfried, ed., Strukturbericht Band V 1937 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1940).

Prototype Generator

aflow --proto=A3B2C9D3E_hP36_194_g_f_hk_h_a --params=$a,c/a,z_{2},x_{4},x_{5},x_{6},z_{6}$

Species:

Running:

Output: