AFLOW Prototype: A4BCD6_hP12_191_h_a_b_i-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/4NVE
or
https://aflow.org/p/A4BCD6_hP12_191_h_a_b_i-001
or
PDF Version
Prototype | As$_{4}$ClKO$_{6}$ |
AFLOW prototype label | A4BCD6_hP12_191_h_a_b_i-001 |
Mineral name | lucabindiite |
ICSD | 65205 |
Pearson symbol | hP12 |
Space group number | 191 |
Space group symbol | $P6/mmm$ |
AFLOW prototype command |
aflow --proto=A4BCD6_hP12_191_h_a_b_i-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}$ |
KAs$_{4}$O$_{6}$Br, KAs$_{4}$O$_{6}$I, NH$_{4}$As$_{4}$O$_{6}$Br, NH$_{4}$As$_{4}$O$_{6}$I
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Cl I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (1b) | K I |
$\mathbf{B_{3}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (4h) | As I |
$\mathbf{B_{4}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (4h) | As I |
$\mathbf{B_{5}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (4h) | As I |
$\mathbf{B_{6}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (4h) | As I |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (6i) | O I |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (6i) | O I |
$\mathbf{B_{9}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{4} \,\mathbf{\hat{z}}$ | (6i) | O I |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (6i) | O I |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (6i) | O I |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{4} \,\mathbf{\hat{z}}$ | (6i) | O I |