Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4BC7_hP12_164_2d_a_bc2d-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/SPWJ
or https://aflow.org/p/A4BC7_hP12_164_2d_a_bc2d-001
or PDF Version

MnBi$_{4}$Te$_{7}$ Structure: A4BC7_hP12_164_2d_a_bc2d-001

Picture of Structure; Click for Big Picture
Prototype Bi$_{4}$MnTe$_{7}$
AFLOW prototype label A4BC7_hP12_164_2d_a_bc2d-001
ICSD 37567
Pearson symbol hP12
Space group number 164
Space group symbol $P\overline{3}m1$
AFLOW prototype command aflow --proto=A4BC7_hP12_164_2d_a_bc2d-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Mn I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (1b) Te I
$\mathbf{B_{3}}$ = $z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (2c) Te II
$\mathbf{B_{4}}$ = $- z_{3} \, \mathbf{a}_{3}$ = $- c z_{3} \,\mathbf{\hat{z}}$ (2c) Te II
$\mathbf{B_{5}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2d) Bi I
$\mathbf{B_{6}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (2d) Bi I
$\mathbf{B_{7}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (2d) Bi II
$\mathbf{B_{8}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (2d) Bi II
$\mathbf{B_{9}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (2d) Te III
$\mathbf{B_{10}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (2d) Te III
$\mathbf{B_{11}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (2d) Te IV
$\mathbf{B_{12}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (2d) Te IV

References

  • Z. S. Alieva, I. R. Amiraslanov, D. I. Nasonova, A. V.Shevelkov, N. A. Abdullayev, Z. A. Jahangirli, E. N. Orujlu, M. M. Otrokov, N. T. Mamedov, M. B. Babanly, and E. V.Chulkov, Novel ternary layered manganese bismuth tellurides of the MnTe-Bi$_{2}$Te$_{3}$ system: Synthesis and crystal structure, J. Alloys Compd. 789, 443–450 (2019), doi:10.1016/j.jallcom.2019.03.030.

Found in

  • J.-Q. Yan, Y. H. Liu, D. S. Parker, Y. Wu, A. A. Aczel, M. Matsuda, M. A. McGuire, and B. C. Sales, A-type antiferromagnetic order in MnBi$_{4}$Te$_{7}$ and MnBi$_{6}$Te$_{10}$ single crystals, Phys. Rev. Materials 4, 054202 (2020), doi:10.1103/PhysRevMaterials.4.054202.

Prototype Generator

aflow --proto=A4BC7_hP12_164_2d_a_bc2d --params=$a,c/a,z_{3},z_{4},z_{5},z_{6},z_{7}$

Species:

Running:

Output: