Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4BC12D3_hR20_166_2c_a_2h_bc-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/9CFG
or https://aflow.org/p/A4BC12D3_hR20_166_2c_a_2h_bc-001
or PDF Version

Ba$_{4}$NbRu$_{3}$O$_{12}$ Structure: A4BC12D3_hR20_166_2c_a_2h_bc-001

Picture of Structure; Click for Big Picture
Prototype Ba$_{4}$NbO$_{12}$Ru$_{3}$
AFLOW prototype label A4BC12D3_hR20_166_2c_a_2h_bc-001
ICSD none
Pearson symbol hR20
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A4BC12D3_hR20_166_2c_a_2h_bc-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}$

Other compounds with this structure

Ir$_{4}$NbRu$_{3}$O$_{12}$,  Mn$_{4}$NbRu$_{3}$O$_{12}$,  Rh$_{4}$NbRu$_{3}$O$_{12}$


  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Nb I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (1b) Ru I
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (2c) Ba I
$\mathbf{B_{4}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- c x_{3} \,\mathbf{\hat{z}}$ (2c) Ba I
$\mathbf{B_{5}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $c x_{4} \,\mathbf{\hat{z}}$ (2c) Ba II
$\mathbf{B_{6}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- c x_{4} \,\mathbf{\hat{z}}$ (2c) Ba II
$\mathbf{B_{7}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $c x_{5} \,\mathbf{\hat{z}}$ (2c) Ru II
$\mathbf{B_{8}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- c x_{5} \,\mathbf{\hat{z}}$ (2c) Ru II
$\mathbf{B_{9}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) O I
$\mathbf{B_{10}}$ = $z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) O I
$\mathbf{B_{11}}$ = $x_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) O I
$\mathbf{B_{12}}$ = $- z_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) O I
$\mathbf{B_{13}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) O I
$\mathbf{B_{14}}$ = $- x_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) O I
$\mathbf{B_{15}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{16}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{17}}$ = $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{18}}$ = $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{19}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{20}}$ = $- x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) O II

References

  • L. T. Nguyen, T. Halloran, W. Xie, T. Kong, C. L. Broholm, and R. J. Cava, Geometrically frustrated trimer-based Mott insulator, Phys. Rev. Mater. 2, 054414 (2018), doi:10.1103/PhysRevMaterials.2.054414.

Found in

  • E. V. Komleva, D. I. Khomskii, and S. V. Streltsov, Three-site transition-metal clusters: Going from localized electrons to molecular orbitals, Phys. Rev. B 102, 174448 (2020), doi:10.1103/PhysRevB.102.174448.

Prototype Generator

aflow --proto=A4BC12D3_hR20_166_2c_a_2h_bc --params=$a,c/a,x_{3},x_{4},x_{5},x_{6},z_{6},x_{7},z_{7}$

Species:

Running:

Output: