AFLOW Prototype: A4B7C16D2_oC58_65_2h_b3g_ac5g2h_h-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/TTW9
or
https://aflow.org/p/A4B7C16D2_oC58_65_2h_b3g_ac5g2h_h-001
or
PDF Version
247 Superconductor(Y$_{2}$Ba$_{4}$Cu$_{7}$O$_{15}$) Structure: A4B7C16D2_oC58_65_2h_b3g_ac5g2h_h-001
Prototype | Ba$_{4}$Cu$_{7}$O$_{15}$Y$_{2}$ |
AFLOW prototype label | A4B7C16D2_oC58_65_2h_b3g_ac5g2h_h-001 |
ICSD | 69254 |
Pearson symbol | oC58 |
Space group number | 65 |
Space group symbol | $Cmmm$ |
AFLOW prototype command |
aflow --proto=A4B7C16D2_oC58_65_2h_b3g_ac5g2h_h-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak x_{9}, \allowbreak x_{10}, \allowbreak x_{11}, \allowbreak x_{12}, \allowbreak x_{13}, \allowbreak x_{14}, \allowbreak x_{15}, \allowbreak x_{16}$ |
Pr$_{2}$Ba$_{4}$Cu$_{7}$O$_{15}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | O I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (2b) | Cu I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2c) | O II |
$\mathbf{B_{4}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ | = | $a x_{4} \,\mathbf{\hat{x}}$ | (4g) | Cu II |
$\mathbf{B_{5}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ | = | $- a x_{4} \,\mathbf{\hat{x}}$ | (4g) | Cu II |
$\mathbf{B_{6}}$ | = | $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}$ | = | $a x_{5} \,\mathbf{\hat{x}}$ | (4g) | Cu III |
$\mathbf{B_{7}}$ | = | $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ | = | $- a x_{5} \,\mathbf{\hat{x}}$ | (4g) | Cu III |
$\mathbf{B_{8}}$ | = | $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}$ | = | $a x_{6} \,\mathbf{\hat{x}}$ | (4g) | Cu IV |
$\mathbf{B_{9}}$ | = | $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}$ | = | $- a x_{6} \,\mathbf{\hat{x}}$ | (4g) | Cu IV |
$\mathbf{B_{10}}$ | = | $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}$ | = | $a x_{7} \,\mathbf{\hat{x}}$ | (4g) | O III |
$\mathbf{B_{11}}$ | = | $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}$ | = | $- a x_{7} \,\mathbf{\hat{x}}$ | (4g) | O III |
$\mathbf{B_{12}}$ | = | $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}$ | = | $a x_{8} \,\mathbf{\hat{x}}$ | (4g) | O IV |
$\mathbf{B_{13}}$ | = | $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}$ | = | $- a x_{8} \,\mathbf{\hat{x}}$ | (4g) | O IV |
$\mathbf{B_{14}}$ | = | $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}$ | = | $a x_{9} \,\mathbf{\hat{x}}$ | (4g) | O V |
$\mathbf{B_{15}}$ | = | $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}$ | = | $- a x_{9} \,\mathbf{\hat{x}}$ | (4g) | O V |
$\mathbf{B_{16}}$ | = | $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}$ | = | $a x_{10} \,\mathbf{\hat{x}}$ | (4g) | O VI |
$\mathbf{B_{17}}$ | = | $- x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}$ | = | $- a x_{10} \,\mathbf{\hat{x}}$ | (4g) | O VI |
$\mathbf{B_{18}}$ | = | $x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}$ | = | $a x_{11} \,\mathbf{\hat{x}}$ | (4g) | O VII |
$\mathbf{B_{19}}$ | = | $- x_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}$ | = | $- a x_{11} \,\mathbf{\hat{x}}$ | (4g) | O VII |
$\mathbf{B_{20}}$ | = | $x_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{12} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Ba I |
$\mathbf{B_{21}}$ | = | $- x_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{12} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Ba I |
$\mathbf{B_{22}}$ | = | $x_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{13} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Ba II |
$\mathbf{B_{23}}$ | = | $- x_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{13} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Ba II |
$\mathbf{B_{24}}$ | = | $x_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{14} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | O VIII |
$\mathbf{B_{25}}$ | = | $- x_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{14} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | O VIII |
$\mathbf{B_{26}}$ | = | $x_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{15} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | O IX |
$\mathbf{B_{27}}$ | = | $- x_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{15} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | O IX |
$\mathbf{B_{28}}$ | = | $x_{16} \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{16} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Y I |
$\mathbf{B_{29}}$ | = | $- x_{16} \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{16} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Y I |