AFLOW Prototype: A3B_hR8_166_h_c-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/JF25
or
https://aflow.org/p/A3B_hR8_166_h_c-001
or
PDF Version
Prototype | P$_{3}$Sn |
AFLOW prototype label | A3B_hR8_166_h_c-001 |
ICSD | 16293 |
Pearson symbol | hR8 |
Space group number | 166 |
Space group symbol | $R\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A3B_hR8_166_h_c-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak z_{2}$ |
GeP$_{3}$
--hex
. Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ | = | $c x_{1} \,\mathbf{\hat{z}}$ | (2c) | Sn I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ | = | $- c x_{1} \,\mathbf{\hat{z}}$ | (2c) | Sn I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ | (6h) | P I |
$\mathbf{B_{4}}$ | = | $z_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ | (6h) | P I |
$\mathbf{B_{5}}$ | = | $x_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{\sqrt{3}}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ | (6h) | P I |
$\mathbf{B_{6}}$ | = | $- z_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ | (6h) | P I |
$\mathbf{B_{7}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ | (6h) | P I |
$\mathbf{B_{8}}$ | = | $- x_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{\sqrt{3}}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ | (6h) | P I |