Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B_hR8_166_h_c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/JF25
or https://aflow.org/p/A3B_hR8_166_h_c-001
or PDF Version

SnP$_{3}$ Structure: A3B_hR8_166_h_c-001

Picture of Structure; Click for Big Picture
Prototype P$_{3}$Sn
AFLOW prototype label A3B_hR8_166_h_c-001
ICSD 16293
Pearson symbol hR8
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A3B_hR8_166_h_c-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak z_{2}$

Other compounds with this structure

GeP$_{3}$


  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $c x_{1} \,\mathbf{\hat{z}}$ (2c) Sn I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $- c x_{1} \,\mathbf{\hat{z}}$ (2c) Sn I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6h) P I
$\mathbf{B_{4}}$ = $z_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6h) P I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6h) P I
$\mathbf{B_{6}}$ = $- z_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6h) P I
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6h) P I
$\mathbf{B_{8}}$ = $- x_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6h) P I

References

  • J. Gullman and O. Olofsson, The crystal structure of SnP$_{3}$ and a note on the crystal structure of GeP$_{3}$, J. Solid State Chem. 5, 441–445 (1972), doi:10.1016/0022-4596(72)90091-6.

Prototype Generator

aflow --proto=A3B_hR8_166_h_c --params=$a,c/a,x_{1},x_{2},z_{2}$

Species:

Running:

Output: