Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B_hP16_194_gh_ac-001

This structure originally had the label A3B_hP16_194_gh_ac. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/7D2A
or https://aflow.org/p/A3B_hP16_194_gh_ac-001
or PDF Version

Ni$_{3}$Ti ($D0_{24}$) Structure: A3B_hP16_194_gh_ac-001

Picture of Structure; Click for Big Picture
Prototype Ni$_{3}$Ti
AFLOW prototype label A3B_hP16_194_gh_ac-001
Strukturbericht designation $D0_{24}$
ICSD 30216
Pearson symbol hP16
Space group number 194
Space group symbol $P6_3/mmc$
AFLOW prototype command aflow --proto=A3B_hP16_194_gh_ac-001
--params=$a, \allowbreak c/a, \allowbreak x_{4}$

Other compounds with this structure

Al$_{3}$Dy,  Al$_{3}$Ru,  Co$_{3}$Ti,  Ni$_{3}$Ti,  Pd$_{3}$Hf,  Pd$_{3}$Np,  Pd$_{3}$Th,  Pd$_{3}$Ti,  Pd$_{3}$Zr,  Pt$_{3}$Hf,  Pt$_{3}$Zr


  • The internal coordinate $x_{4}$ was not determined in any reference we could find. We follow (Villars, 2016) and the ICSD and set $x_{4} = -1/6$, which places the niobium atoms in line with the Ti atoms in the $z = 1/4$ and $z = 3/4$ planes. This is not required by symmetry, and it is likely that the actual value of $x_{4}$ will be close, but not equal to, $-1/6$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Ti I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) Ti I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (2c) Ti II
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (2c) Ti II
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (6g) Ni I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (6g) Ni I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (6g) Ni I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (6g) Ni I
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (6g) Ni I
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (6g) Ni I
$\mathbf{B_{11}}$ = $x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Ni II
$\mathbf{B_{12}}$ = $- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Ni II
$\mathbf{B_{13}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Ni II
$\mathbf{B_{14}}$ = $- x_{4} \, \mathbf{a}_{1}- 2 x_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Ni II
$\mathbf{B_{15}}$ = $2 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Ni II
$\mathbf{B_{16}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Ni II

References

  • F. Laves and H. J. Wallbaum, Die Kristallstruktur von Ni$_{3}$Ti und Si$_{2}$Ti (Zwei neue Typen.), Z. Krystallogr. 101, 78–93 (1939), doi:10.1524/zkri.1939.101.1.78.

Found in

  • P. Villars, ed., PAULING FILE in: Inorganic Solid Phases (SpringerMaterials (online database), Heidelberg, 2016).

Prototype Generator

aflow --proto=A3B_hP16_194_gh_ac --params=$a,c/a,x_{4}$

Species:

Running:

Output: