Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B5_tI32_140_ah_cl-001

This structure originally had the label A3B5_tI32_140_ah_cl. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/AK18
or https://aflow.org/p/A3B5_tI32_140_ah_cl-001
or PDF Version

Cr$_{5}$B$_{3}$ ($D8_{l}$) Structure: A3B5_tI32_140_ah_cl-001

Picture of Structure; Click for Big Picture
Prototype B$_{3}$Cr$_{5}$
AFLOW prototype label A3B5_tI32_140_ah_cl-001
Strukturbericht designation $D8_{l}$
ICSD 27124
Pearson symbol tI32
Space group number 140
Space group symbol $I4/mcm$
AFLOW prototype command aflow --proto=A3B5_tI32_140_ah_cl-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak z_{4}$

Other compounds with this structure

Eu$_{5}$Ge$_{3}$,  Pr$_{5}$Si$_{3}$,  Ta$_{5}$Ge$_{3}$,  Nb$_{5}$Si$_{3}$,  Ta$_{5}$Si$_{3}$,  EuIrGe$_{2}$,  Fe$_{5}$PB$_{2}$,  Fe$_{5}$SiB$_{2}$,  Fe4CoPB$_{2}$,  Fe4MnPB$_{2}$,  Fe4CoSiB$_{2}$,  Fe4MnSiB$_{2}$,  Mo$_{5}$SiB$_{2}$,  Sr$_{5}$In$_{3}$,  Gd$_{5}$CoSi$_{2}$,  Ca$_{5}$Si$_{3}$,  Sr$_{5}$Si$_{3}$


  • We have been unable to obtain a copy of (Bertaut, 1953), so we use the data found online from (Downs, 2003). Although Cr$_{5}$B$_{3}$ is universally regarded as the prototype for $D8_{l}$, it appears that no other determination of the internal parameters has ever been made. The values found in (Downs, 2003) seem to be reasonable choices, and agree with the ICSD entry.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (4a) B I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (4a) B I
$\mathbf{B_{3}}$ = $0$ = $0$ (4c) Cr I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (4c) Cr I
$\mathbf{B_{5}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(2 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8h) B II
$\mathbf{B_{6}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8h) B II
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ (8h) B II
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ (8h) B II
$\mathbf{B_{9}}$ = $\left(x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(2 x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16l) Cr II
$\mathbf{B_{10}}$ = $\left(- x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(2 x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16l) Cr II
$\mathbf{B_{11}}$ = $\left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(- x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16l) Cr II
$\mathbf{B_{12}}$ = $- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16l) Cr II
$\mathbf{B_{13}}$ = $\left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16l) Cr II
$\mathbf{B_{14}}$ = $- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16l) Cr II
$\mathbf{B_{15}}$ = $\left(x_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(2 x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16l) Cr II
$\mathbf{B_{16}}$ = $- \left(x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(2 x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16l) Cr II

References

  • F. Bertaut and P. Blum, C. R. Acad. Sci., Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences 236, 1055–1056 (1953).

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=A3B5_tI32_140_ah_cl --params=$a,c/a,x_{3},x_{4},z_{4}$

Species:

Running:

Output: