Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B4_hR7_160_3a_4a-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/RN9C
or https://aflow.org/p/A3B4_hR7_160_3a_4a-001
or PDF Version

Sn$_{4}$As$_{3}$ Structure: A3B4_hR7_160_3a_4a-001

Picture of Structure; Click for Big Picture
Prototype As$_{3}$Sn$_{4}$
AFLOW prototype label A3B4_hR7_160_3a_4a-001
ICSD 419884
Pearson symbol hR7
Space group number 160
Space group symbol $R3m$
AFLOW prototype command aflow --proto=A3B4_hR7_160_3a_4a-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}$

  • Most earlier e.g. (Pearson, 1967) work places this in space group $R\overline{3}m$ #166, in which case this would be in the Al$_{4}$C$_{3}$ ($D7_{1}$) structure. (Kovnir, 2009) argue that there is actually no inversion site, so the structure is as presented here, in space group $R3m$ #160. The two structures are very close - if we allow a 0.1Å uncertainty in the atomic positions the structure becomes $D7_{1}$. As we already have that structure, we present the Kovnir et al. structure here.
  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $c x_{1} \,\mathbf{\hat{z}}$ (1a) As I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (1a) As II
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (1a) As III
$\mathbf{B_{4}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $c x_{4} \,\mathbf{\hat{z}}$ (1a) Sn I
$\mathbf{B_{5}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $c x_{5} \,\mathbf{\hat{z}}$ (1a) Sn II
$\mathbf{B_{6}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $c x_{6} \,\mathbf{\hat{z}}$ (1a) Sn III
$\mathbf{B_{7}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $c x_{7} \,\mathbf{\hat{z}}$ (1a) Sn IV

References

  • K. Kovnir, Y. V. Kolen'ko, A. I. Baranov, I. S. Neira, A. V. Sobolev, M. Yoshimura, I. A. .Presniakov, and A. V. Shevelkov, Sn$_{4}$As$_{3}$ revisited: Solvothermal synthesis and crystal and electronic structure, J. Solid State Chem. 182, 630–639 (2009), doi:10.1016/j.jssc.2008.12.007.
  • W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Volume 2, International Series of Monographs on Metal Physics and Physical Metallurgy, vol. 8 (Pergamon Press, Oxford, London, Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig, 1967).

Prototype Generator

aflow --proto=A3B4_hR7_160_3a_4a --params=$a,c/a,x_{1},x_{2},x_{3},x_{4},x_{5},x_{6},x_{7}$

Species:

Running:

Output: