Sn_4As_3 Structure: A3B4_hR7_160_3a_4a-001

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 4.* In preparation.

https://aflow.org/p/RN9C

https://aflow.org/p/A3B4_hR7_160_3a_4a-001

- Most earlier e.g. (Pearson, 1967) work places this in space group $R\overline{3}m \#166$, in which case this would be in the Al₄C₃ (D7₁) structure. (Kovnir, 2009) argue that there is actually no inversion site, so the structure is as presented here, in space group R3m #160. The two structures are very close if we allow a 0.1Å uncertainty in the atomic positions the structure becomes $D7_1$. As we already have that structure, we present the Kovnir *et al.* structure here.
- Hexagonal settings of this structure can be obtained with the option --hex.

Rhombohedral primitive vectors

 $\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\,\hat{\mathbf{y}} + \frac{1}{3}c\,\hat{\mathbf{z}}$ $\mathbf{a_2} = \frac{1}{\sqrt{3}}a\,\hat{\mathbf{y}} + \frac{1}{3}c\,\hat{\mathbf{z}}$ $\mathbf{a_3} = -\frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\,\hat{\mathbf{y}} + \frac{1}{3}c\,\hat{\mathbf{z}}$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
B_1	=	$x_1 \mathbf{a}_1 + x_1 \mathbf{a}_2 + x_1 \mathbf{a}_3$	=	$cx_1\mathbf{\hat{z}}$	(1a)	As I
B_2	=	$x_2 \mathbf{a}_1 + x_2 \mathbf{a}_2 + x_2 \mathbf{a}_3$	=	$cx_2\mathbf{\hat{z}}$	(1a)	As II
B_3	=	$x_3 \mathbf{a}_1 + x_3 \mathbf{a}_2 + x_3 \mathbf{a}_3$	=	$cx_3\mathbf{\hat{z}}$	(1a)	As III
B_4	=	$x_4 \mathbf{a}_1 + x_4 \mathbf{a}_2 + x_4 \mathbf{a}_3$	=	$cx_4\mathbf{\hat{z}}$	(1a)	$\operatorname{Sn}\operatorname{I}$
B_5	=	$x_5 \mathbf{a}_1 + x_5 \mathbf{a}_2 + x_5 \mathbf{a}_3$	=	$cx_5\mathbf{\hat{z}}$	(1a)	Sn II
\mathbf{B}_{6}	=	$x_6 \mathbf{a}_1 + x_6 \mathbf{a}_2 + x_6 \mathbf{a}_3$	=	$cx_6\mathbf{\hat{z}}$	(1a)	Sn III
B_7	=	$x_7 \mathbf{a}_1 + x_7 \mathbf{a}_2 + x_7 \mathbf{a}_3$	=	$cx_7\mathbf{\hat{z}}$	(1a)	$\operatorname{Sn}\mathrm{IV}$

References

- K. Kovnir, Y. V. Kolen'ko, A. I. Baranov, I. S. Neira, A. V. Sobolev, M. Yoshimura, I. A. Presniakov, and A. V. Shevelkov, Sn₄As₃ revisited: Solvothermal synthesis and crystal and electronic structure, J. Solid State Chem. 182, 630–639 (2009), doi:10.1016/j.jssc.2008.12.007.
- [2] W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Volume 2, International Series of Monographs on Metal Physics and Physical Metallurgy, vol. 8 (Pergamon Press, Oxford, London, Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig, 1967).