AFLOW Prototype: A3B2_hP5_164_ad_d-001
This structure originally had the label A3B2_hP5_164_ad_d. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/EUFT
or
https://aflow.org/p/A3B2_hP5_164_ad_d-001
or
PDF Version
Prototype | Al$_{3}$Ni$_{2}$ |
AFLOW prototype label | A3B2_hP5_164_ad_d-001 |
Strukturbericht designation | $D5_{13}$ |
ICSD | 107937 |
Pearson symbol | hP5 |
Space group number | 164 |
Space group symbol | $P\overline{3}m1$ |
AFLOW prototype command |
aflow --proto=A3B2_hP5_164_ad_d-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak z_{3}$ |
Al$_{3}$Cu$_{2}$, Al$_{3}$In$_{2}$, Al$_{3}$Pd$_{2}$, Al$_{3}$Pt$_{2}$, Al$_{3}$Tc$_{2}$, Ga$_{3}$Pt$_{2}$, In$_{3}$Al$_{2}$, In$_{3}$Pd$_{2}$, In$_{3}$Pt$_{2}$, Mg$_{3}$Sb$_{2}$, $\beta'$-Ga$_{3}$Ni$_{2}$, $\delta'$-In$_{3}$Ni$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Al I |
$\mathbf{B_{2}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (2d) | Al II |
$\mathbf{B_{3}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (2d) | Al II |
$\mathbf{B_{4}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (2d) | Ni I |
$\mathbf{B_{5}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (2d) | Ni I |