Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B2C14D3_hR22_166_d_ab_c2h_e-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/6NJM
or https://aflow.org/p/A3B2C14D3_hR22_166_d_ab_c2h_e-001
or PDF Version

Mn$_{2}$La$_{3}$Sb$_{3}$O$_{14}$ Structure: A3B2C14D3_hR22_166_d_ab_c2h_e-001

Picture of Structure; Click for Big Picture
Prototype La$_{3}$Mn$_{2}$O$_{14}$Sb$_{3}$
AFLOW prototype label A3B2C14D3_hR22_166_d_ab_c2h_e-001
ICSD 191137
Pearson symbol hR22
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A3B2C14D3_hR22_166_d_ab_c2h_e-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}$

Other compounds with this structure

Mg$_{2}$Dy$_{3}$Sb$_{3}$O$_{14}$,  Mg$_{2}$Er$_{3}$Sb$_{3}$O$_{14}$,  Mg$_{2}$Gd$_{3}$Sb$_{3}$O$_{14}$,  Mg$_{2}$Ho$_{3}$Sb$_{3}$O$_{14}$,  Mg$_{2}$Nd$_{3}$Sb$_{3}$O$_{14}$,  Mg$_{2}$Pr$_{3}$Sb$_{3}$O$_{14}$,  Mg$_{2}$Tb$_{3}$Sb$_{3}$O$_{14}$,  Mg$_{2}$Tm$_{3}$Sb$_{3}$O$_{14}$,  Mg$_{2}$Yb$_{3}$Sb$_{3}$O$_{14}$,  Mn$_{2}$Pr$_{3}$Sb$_{3}$O$_{14}$,  Mn$_{2}$Nd$_{3}$Sb$_{3}$O$_{14}$,  Zn$_{2}$Dy$_{3}$Sb$_{3}$O$_{14}$,  Zn$_{2}$Er$_{3}$Sb$_{3}$O$_{14}$,  Zn$_{2}$Gd$_{3}$Sb$_{3}$O$_{14}$,  Zn$_{2}$Ho$_{3}$Sb$_{3}$O$_{14}$,  Zn$_{2}$Nd$_{3}$Sb$_{3}$O$_{14}$,  Zn$_{2}$Pr$_{3}$Sb$_{3}$O$_{14}$,  Zn$_{2}$Tb$_{3}$Sb$_{3}$O$_{14}$,  Zn$_{2}$Tm$_{3}$Sb$_{3}$O$_{14}$,  Zn$_{2}$Yb$_{3}$Sb$_{3}$O$_{14}$


  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Mn I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (1b) Mn II
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (2c) O I
$\mathbf{B_{4}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- c x_{3} \,\mathbf{\hat{z}}$ (2c) O I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (3d) La I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (3d) La I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ (3d) La I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3e) Sb I
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3e) Sb I
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{12}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3e) Sb I
$\mathbf{B_{11}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{12}}$ = $z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{13}}$ = $x_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{14}}$ = $- z_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{15}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{16}}$ = $- x_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) O II
$\mathbf{B_{17}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) O III
$\mathbf{B_{18}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) O III
$\mathbf{B_{19}}$ = $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) O III
$\mathbf{B_{20}}$ = $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) O III
$\mathbf{B_{21}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) O III
$\mathbf{B_{22}}$ = $- x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) O III

References

  • W. T. Fu and D. J. W. Ijdo, Crystal structure of Mn$_{2}$Ln$_{3}$Sb$_{3}$O$_{14}$ (Ln=La, Pr and Nd): A new ordered rhombohedral pyrochlore, J. Solid State Chem. 213, 165–168 (2014), doi:10.1016/j.jssc.2014.02.025.

Found in

  • Inorganic Crystal Structure Database. Entry 191137 (La3Mn2Sb3O14).

Prototype Generator

aflow --proto=A3B2C14D3_hR22_166_d_ab_c2h_e --params=$a,c/a,x_{3},x_{6},z_{6},x_{7},z_{7}$

Species:

Running:

Output: