Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B12C2D4_aP21_2_ai_6i_i_2i-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/L1KQ
or https://aflow.org/p/A3B12C2D4_aP21_2_ai_6i_i_2i-001
or PDF Version

Cu$_{3}$(P$_{2}$O$_{6}$OH)$_{2}$ Structure: A3B12C2D4_aP21_2_ai_6i_i_2i-001

Picture of Structure; Click for Big Picture
Prototype Cu$_{3}$O$_{12}$(OH)$_{2}$P$_{4}$
AFLOW prototype label A3B12C2D4_aP21_2_ai_6i_i_2i-001
ICSD 170128
Pearson symbol aP21
Space group number 2
Space group symbol $P\overline{1}$
AFLOW prototype command aflow --proto=A3B12C2D4_aP21_2_ai_6i_i_2i-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \alpha, \allowbreak \beta, \allowbreak \gamma, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}$

  • The positions of the hydrogen atoms in the OH radicals were not determined. While we list the radical as a separate species, OH I, (Baies, 2005) simply list it as O7.
  • The positions of the oxygen atoms in the ICSD entry do not precisely match the positions in Table 2 of (Baies, 2005).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \cos{\gamma} \,\mathbf{\hat{x}}+b \sin{\gamma} \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c_{x} \,\mathbf{\hat{x}}+c_{y} \,\mathbf{\hat{y}}+c_{z} \,\mathbf{\hat{z}}\\c_{x} & = & c \cos{\beta} \\ c_{y} & = & c (\cos{\alpha} - \cos{\beta}\cos{\gamma}) / {\sin{\gamma}} \\ c_{z} & = & \sqrt{c^2 - c_{x}^2- c_{y}^2} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Cu I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + b y_{2} \cos{\gamma} + c_{x} z_{2}\right) \,\mathbf{\hat{x}}+\left(b y_{2} \sin{\gamma} + c_{y} z_{2}\right) \,\mathbf{\hat{y}}+c_{z} z_{2} \,\mathbf{\hat{z}}$ (2i) Cu II
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \left(a x_{2} + b y_{2} \cos{\gamma} + c_{x} z_{2}\right) \,\mathbf{\hat{x}}- \left(b y_{2} \sin{\gamma} + c_{y} z_{2}\right) \,\mathbf{\hat{y}}- c_{z} z_{2} \,\mathbf{\hat{z}}$ (2i) Cu II
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + b y_{3} \cos{\gamma} + c_{x} z_{3}\right) \,\mathbf{\hat{x}}+\left(b y_{3} \sin{\gamma} + c_{y} z_{3}\right) \,\mathbf{\hat{y}}+c_{z} z_{3} \,\mathbf{\hat{z}}$ (2i) O I
$\mathbf{B_{5}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + b y_{3} \cos{\gamma} + c_{x} z_{3}\right) \,\mathbf{\hat{x}}- \left(b y_{3} \sin{\gamma} + c_{y} z_{3}\right) \,\mathbf{\hat{y}}- c_{z} z_{3} \,\mathbf{\hat{z}}$ (2i) O I
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + b y_{4} \cos{\gamma} + c_{x} z_{4}\right) \,\mathbf{\hat{x}}+\left(b y_{4} \sin{\gamma} + c_{y} z_{4}\right) \,\mathbf{\hat{y}}+c_{z} z_{4} \,\mathbf{\hat{z}}$ (2i) O II
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \left(a x_{4} + b y_{4} \cos{\gamma} + c_{x} z_{4}\right) \,\mathbf{\hat{x}}- \left(b y_{4} \sin{\gamma} + c_{y} z_{4}\right) \,\mathbf{\hat{y}}- c_{z} z_{4} \,\mathbf{\hat{z}}$ (2i) O II
$\mathbf{B_{8}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + b y_{5} \cos{\gamma} + c_{x} z_{5}\right) \,\mathbf{\hat{x}}+\left(b y_{5} \sin{\gamma} + c_{y} z_{5}\right) \,\mathbf{\hat{y}}+c_{z} z_{5} \,\mathbf{\hat{z}}$ (2i) O III
$\mathbf{B_{9}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + b y_{5} \cos{\gamma} + c_{x} z_{5}\right) \,\mathbf{\hat{x}}- \left(b y_{5} \sin{\gamma} + c_{y} z_{5}\right) \,\mathbf{\hat{y}}- c_{z} z_{5} \,\mathbf{\hat{z}}$ (2i) O III
$\mathbf{B_{10}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + b y_{6} \cos{\gamma} + c_{x} z_{6}\right) \,\mathbf{\hat{x}}+\left(b y_{6} \sin{\gamma} + c_{y} z_{6}\right) \,\mathbf{\hat{y}}+c_{z} z_{6} \,\mathbf{\hat{z}}$ (2i) O IV
$\mathbf{B_{11}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \left(a x_{6} + b y_{6} \cos{\gamma} + c_{x} z_{6}\right) \,\mathbf{\hat{x}}- \left(b y_{6} \sin{\gamma} + c_{y} z_{6}\right) \,\mathbf{\hat{y}}- c_{z} z_{6} \,\mathbf{\hat{z}}$ (2i) O IV
$\mathbf{B_{12}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\left(a x_{7} + b y_{7} \cos{\gamma} + c_{x} z_{7}\right) \,\mathbf{\hat{x}}+\left(b y_{7} \sin{\gamma} + c_{y} z_{7}\right) \,\mathbf{\hat{y}}+c_{z} z_{7} \,\mathbf{\hat{z}}$ (2i) O V
$\mathbf{B_{13}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \left(a x_{7} + b y_{7} \cos{\gamma} + c_{x} z_{7}\right) \,\mathbf{\hat{x}}- \left(b y_{7} \sin{\gamma} + c_{y} z_{7}\right) \,\mathbf{\hat{y}}- c_{z} z_{7} \,\mathbf{\hat{z}}$ (2i) O V
$\mathbf{B_{14}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\left(a x_{8} + b y_{8} \cos{\gamma} + c_{x} z_{8}\right) \,\mathbf{\hat{x}}+\left(b y_{8} \sin{\gamma} + c_{y} z_{8}\right) \,\mathbf{\hat{y}}+c_{z} z_{8} \,\mathbf{\hat{z}}$ (2i) O VI
$\mathbf{B_{15}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- \left(a x_{8} + b y_{8} \cos{\gamma} + c_{x} z_{8}\right) \,\mathbf{\hat{x}}- \left(b y_{8} \sin{\gamma} + c_{y} z_{8}\right) \,\mathbf{\hat{y}}- c_{z} z_{8} \,\mathbf{\hat{z}}$ (2i) O VI
$\mathbf{B_{16}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\left(a x_{9} + b y_{9} \cos{\gamma} + c_{x} z_{9}\right) \,\mathbf{\hat{x}}+\left(b y_{9} \sin{\gamma} + c_{y} z_{9}\right) \,\mathbf{\hat{y}}+c_{z} z_{9} \,\mathbf{\hat{z}}$ (2i) OH I
$\mathbf{B_{17}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- \left(a x_{9} + b y_{9} \cos{\gamma} + c_{x} z_{9}\right) \,\mathbf{\hat{x}}- \left(b y_{9} \sin{\gamma} + c_{y} z_{9}\right) \,\mathbf{\hat{y}}- c_{z} z_{9} \,\mathbf{\hat{z}}$ (2i) OH I
$\mathbf{B_{18}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\left(a x_{10} + b y_{10} \cos{\gamma} + c_{x} z_{10}\right) \,\mathbf{\hat{x}}+\left(b y_{10} \sin{\gamma} + c_{y} z_{10}\right) \,\mathbf{\hat{y}}+c_{z} z_{10} \,\mathbf{\hat{z}}$ (2i) P I
$\mathbf{B_{19}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \left(a x_{10} + b y_{10} \cos{\gamma} + c_{x} z_{10}\right) \,\mathbf{\hat{x}}- \left(b y_{10} \sin{\gamma} + c_{y} z_{10}\right) \,\mathbf{\hat{y}}- c_{z} z_{10} \,\mathbf{\hat{z}}$ (2i) P I
$\mathbf{B_{20}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\left(a x_{11} + b y_{11} \cos{\gamma} + c_{x} z_{11}\right) \,\mathbf{\hat{x}}+\left(b y_{11} \sin{\gamma} + c_{y} z_{11}\right) \,\mathbf{\hat{y}}+c_{z} z_{11} \,\mathbf{\hat{z}}$ (2i) P II
$\mathbf{B_{21}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- \left(a x_{11} + b y_{11} \cos{\gamma} + c_{x} z_{11}\right) \,\mathbf{\hat{x}}- \left(b y_{11} \sin{\gamma} + c_{y} z_{11}\right) \,\mathbf{\hat{y}}- c_{z} z_{11} \,\mathbf{\hat{z}}$ (2i) P II

References

  • R. Baies, V. Caignaert, V. Pralong, and B. Raveau, Copper Hydroxydiphosphate with a One-Dimensional Arrangement of Copper Polyhedra:  Cu$_{3}$[P$_{2}$O$_{6}$OH]$_{2}$, Inorganic Chemistry 44, 2376–2380 (2005), doi:10.1021/ic0485209.

Prototype Generator

aflow --proto=A3B12C2D4_aP21_2_ai_6i_i_2i --params=$a,b/a,c/a,\alpha,\beta,\gamma,x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11}$

Species:

Running:

Output: