AFLOW Prototype: A3B12C2D4_aP21_2_ai_6i_i_2i-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/L1KQ
or
https://aflow.org/p/A3B12C2D4_aP21_2_ai_6i_i_2i-001
or
PDF Version
Prototype | Cu$_{3}$O$_{12}$(OH)$_{2}$P$_{4}$ |
AFLOW prototype label | A3B12C2D4_aP21_2_ai_6i_i_2i-001 |
ICSD | 170128 |
Pearson symbol | aP21 |
Space group number | 2 |
Space group symbol | $P\overline{1}$ |
AFLOW prototype command |
aflow --proto=A3B12C2D4_aP21_2_ai_6i_i_2i-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \alpha, \allowbreak \beta, \allowbreak \gamma, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Cu I |
$\mathbf{B_{2}}$ | = | $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\left(a x_{2} + b y_{2} \cos{\gamma} + c_{x} z_{2}\right) \,\mathbf{\hat{x}}+\left(b y_{2} \sin{\gamma} + c_{y} z_{2}\right) \,\mathbf{\hat{y}}+c_{z} z_{2} \,\mathbf{\hat{z}}$ | (2i) | Cu II |
$\mathbf{B_{3}}$ | = | $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $- \left(a x_{2} + b y_{2} \cos{\gamma} + c_{x} z_{2}\right) \,\mathbf{\hat{x}}- \left(b y_{2} \sin{\gamma} + c_{y} z_{2}\right) \,\mathbf{\hat{y}}- c_{z} z_{2} \,\mathbf{\hat{z}}$ | (2i) | Cu II |
$\mathbf{B_{4}}$ | = | $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + b y_{3} \cos{\gamma} + c_{x} z_{3}\right) \,\mathbf{\hat{x}}+\left(b y_{3} \sin{\gamma} + c_{y} z_{3}\right) \,\mathbf{\hat{y}}+c_{z} z_{3} \,\mathbf{\hat{z}}$ | (2i) | O I |
$\mathbf{B_{5}}$ | = | $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- \left(a x_{3} + b y_{3} \cos{\gamma} + c_{x} z_{3}\right) \,\mathbf{\hat{x}}- \left(b y_{3} \sin{\gamma} + c_{y} z_{3}\right) \,\mathbf{\hat{y}}- c_{z} z_{3} \,\mathbf{\hat{z}}$ | (2i) | O I |
$\mathbf{B_{6}}$ | = | $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\left(a x_{4} + b y_{4} \cos{\gamma} + c_{x} z_{4}\right) \,\mathbf{\hat{x}}+\left(b y_{4} \sin{\gamma} + c_{y} z_{4}\right) \,\mathbf{\hat{y}}+c_{z} z_{4} \,\mathbf{\hat{z}}$ | (2i) | O II |
$\mathbf{B_{7}}$ | = | $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- \left(a x_{4} + b y_{4} \cos{\gamma} + c_{x} z_{4}\right) \,\mathbf{\hat{x}}- \left(b y_{4} \sin{\gamma} + c_{y} z_{4}\right) \,\mathbf{\hat{y}}- c_{z} z_{4} \,\mathbf{\hat{z}}$ | (2i) | O II |
$\mathbf{B_{8}}$ | = | $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + b y_{5} \cos{\gamma} + c_{x} z_{5}\right) \,\mathbf{\hat{x}}+\left(b y_{5} \sin{\gamma} + c_{y} z_{5}\right) \,\mathbf{\hat{y}}+c_{z} z_{5} \,\mathbf{\hat{z}}$ | (2i) | O III |
$\mathbf{B_{9}}$ | = | $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- \left(a x_{5} + b y_{5} \cos{\gamma} + c_{x} z_{5}\right) \,\mathbf{\hat{x}}- \left(b y_{5} \sin{\gamma} + c_{y} z_{5}\right) \,\mathbf{\hat{y}}- c_{z} z_{5} \,\mathbf{\hat{z}}$ | (2i) | O III |
$\mathbf{B_{10}}$ | = | $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + b y_{6} \cos{\gamma} + c_{x} z_{6}\right) \,\mathbf{\hat{x}}+\left(b y_{6} \sin{\gamma} + c_{y} z_{6}\right) \,\mathbf{\hat{y}}+c_{z} z_{6} \,\mathbf{\hat{z}}$ | (2i) | O IV |
$\mathbf{B_{11}}$ | = | $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $- \left(a x_{6} + b y_{6} \cos{\gamma} + c_{x} z_{6}\right) \,\mathbf{\hat{x}}- \left(b y_{6} \sin{\gamma} + c_{y} z_{6}\right) \,\mathbf{\hat{y}}- c_{z} z_{6} \,\mathbf{\hat{z}}$ | (2i) | O IV |
$\mathbf{B_{12}}$ | = | $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\left(a x_{7} + b y_{7} \cos{\gamma} + c_{x} z_{7}\right) \,\mathbf{\hat{x}}+\left(b y_{7} \sin{\gamma} + c_{y} z_{7}\right) \,\mathbf{\hat{y}}+c_{z} z_{7} \,\mathbf{\hat{z}}$ | (2i) | O V |
$\mathbf{B_{13}}$ | = | $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $- \left(a x_{7} + b y_{7} \cos{\gamma} + c_{x} z_{7}\right) \,\mathbf{\hat{x}}- \left(b y_{7} \sin{\gamma} + c_{y} z_{7}\right) \,\mathbf{\hat{y}}- c_{z} z_{7} \,\mathbf{\hat{z}}$ | (2i) | O V |
$\mathbf{B_{14}}$ | = | $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\left(a x_{8} + b y_{8} \cos{\gamma} + c_{x} z_{8}\right) \,\mathbf{\hat{x}}+\left(b y_{8} \sin{\gamma} + c_{y} z_{8}\right) \,\mathbf{\hat{y}}+c_{z} z_{8} \,\mathbf{\hat{z}}$ | (2i) | O VI |
$\mathbf{B_{15}}$ | = | $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- \left(a x_{8} + b y_{8} \cos{\gamma} + c_{x} z_{8}\right) \,\mathbf{\hat{x}}- \left(b y_{8} \sin{\gamma} + c_{y} z_{8}\right) \,\mathbf{\hat{y}}- c_{z} z_{8} \,\mathbf{\hat{z}}$ | (2i) | O VI |
$\mathbf{B_{16}}$ | = | $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\left(a x_{9} + b y_{9} \cos{\gamma} + c_{x} z_{9}\right) \,\mathbf{\hat{x}}+\left(b y_{9} \sin{\gamma} + c_{y} z_{9}\right) \,\mathbf{\hat{y}}+c_{z} z_{9} \,\mathbf{\hat{z}}$ | (2i) | OH I |
$\mathbf{B_{17}}$ | = | $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- \left(a x_{9} + b y_{9} \cos{\gamma} + c_{x} z_{9}\right) \,\mathbf{\hat{x}}- \left(b y_{9} \sin{\gamma} + c_{y} z_{9}\right) \,\mathbf{\hat{y}}- c_{z} z_{9} \,\mathbf{\hat{z}}$ | (2i) | OH I |
$\mathbf{B_{18}}$ | = | $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\left(a x_{10} + b y_{10} \cos{\gamma} + c_{x} z_{10}\right) \,\mathbf{\hat{x}}+\left(b y_{10} \sin{\gamma} + c_{y} z_{10}\right) \,\mathbf{\hat{y}}+c_{z} z_{10} \,\mathbf{\hat{z}}$ | (2i) | P I |
$\mathbf{B_{19}}$ | = | $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- \left(a x_{10} + b y_{10} \cos{\gamma} + c_{x} z_{10}\right) \,\mathbf{\hat{x}}- \left(b y_{10} \sin{\gamma} + c_{y} z_{10}\right) \,\mathbf{\hat{y}}- c_{z} z_{10} \,\mathbf{\hat{z}}$ | (2i) | P I |
$\mathbf{B_{20}}$ | = | $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $\left(a x_{11} + b y_{11} \cos{\gamma} + c_{x} z_{11}\right) \,\mathbf{\hat{x}}+\left(b y_{11} \sin{\gamma} + c_{y} z_{11}\right) \,\mathbf{\hat{y}}+c_{z} z_{11} \,\mathbf{\hat{z}}$ | (2i) | P II |
$\mathbf{B_{21}}$ | = | $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- \left(a x_{11} + b y_{11} \cos{\gamma} + c_{x} z_{11}\right) \,\mathbf{\hat{x}}- \left(b y_{11} \sin{\gamma} + c_{y} z_{11}\right) \,\mathbf{\hat{y}}- c_{z} z_{11} \,\mathbf{\hat{z}}$ | (2i) | P II |