Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A31B20_tI204_140_b2gh3m_ac2fh3l-001

This structure originally had the label A31B20_tI204_140_b2gh3m_ac2fh3l. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/TBHL
or https://aflow.org/p/A31B20_tI204_140_b2gh3m_ac2fh3l-001
or PDF Version

Pu$_{31}$Rh$_{20}$ Structure: A31B20_tI204_140_b2gh3m_ac2fh3l-001

Picture of Structure; Click for Big Picture
Prototype Pu$_{31}$Rh$_{20}$
AFLOW prototype label A31B20_tI204_140_b2gh3m_ac2fh3l-001
ICSD 1111
Pearson symbol tI204
Space group number 140
Space group symbol $I4/mcm$
AFLOW prototype command aflow --proto=A31B20_tI204_140_b2gh3m_ac2fh3l-001
--params=$a, \allowbreak c/a, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak x_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}$

Other compounds with this structure

Pu$_{31}$Pt$_{20}$,  Ca$_{31}$Sn$_{20}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (4a) Rh I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (4a) Rh I
$\mathbf{B_{3}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4b) Pu I
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4b) Pu I
$\mathbf{B_{5}}$ = $0$ = $0$ (4c) Rh II
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (4c) Rh II
$\mathbf{B_{7}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ = $c z_{4} \,\mathbf{\hat{z}}$ (8f) Rh III
$\mathbf{B_{8}}$ = $- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Rh III
$\mathbf{B_{9}}$ = $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (8f) Rh III
$\mathbf{B_{10}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Rh III
$\mathbf{B_{11}}$ = $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}$ = $c z_{5} \,\mathbf{\hat{z}}$ (8f) Rh IV
$\mathbf{B_{12}}$ = $- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Rh IV
$\mathbf{B_{13}}$ = $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}$ = $- c z_{5} \,\mathbf{\hat{z}}$ (8f) Rh IV
$\mathbf{B_{14}}$ = $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Rh IV
$\mathbf{B_{15}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8g) Pu II
$\mathbf{B_{16}}$ = $z_{6} \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ (8g) Pu II
$\mathbf{B_{17}}$ = $- z_{6} \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{6} \,\mathbf{\hat{z}}$ (8g) Pu II
$\mathbf{B_{18}}$ = $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (8g) Pu II
$\mathbf{B_{19}}$ = $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8g) Pu III
$\mathbf{B_{20}}$ = $z_{7} \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{7} \,\mathbf{\hat{z}}$ (8g) Pu III
$\mathbf{B_{21}}$ = $- z_{7} \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{7} \,\mathbf{\hat{z}}$ (8g) Pu III
$\mathbf{B_{22}}$ = $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8g) Pu III
$\mathbf{B_{23}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\left(2 x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8h) Pu IV
$\mathbf{B_{24}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- \left(2 x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8h) Pu IV
$\mathbf{B_{25}}$ = $x_{8} \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}$ (8h) Pu IV
$\mathbf{B_{26}}$ = $- x_{8} \, \mathbf{a}_{1}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}$ (8h) Pu IV
$\mathbf{B_{27}}$ = $\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+\left(2 x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8h) Rh V
$\mathbf{B_{28}}$ = $- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- \left(2 x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8h) Rh V
$\mathbf{B_{29}}$ = $x_{9} \, \mathbf{a}_{1}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}$ (8h) Rh V
$\mathbf{B_{30}}$ = $- x_{9} \, \mathbf{a}_{1}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}$ (8h) Rh V
$\mathbf{B_{31}}$ = $\left(x_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(2 x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (16l) Rh VI
$\mathbf{B_{32}}$ = $\left(- x_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(2 x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (16l) Rh VI
$\mathbf{B_{33}}$ = $\left(x_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(- x_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (16l) Rh VI
$\mathbf{B_{34}}$ = $- \left(x_{10} - z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (16l) Rh VI
$\mathbf{B_{35}}$ = $\left(x_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (16l) Rh VI
$\mathbf{B_{36}}$ = $- \left(x_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (16l) Rh VI
$\mathbf{B_{37}}$ = $\left(x_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(2 x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (16l) Rh VI
$\mathbf{B_{38}}$ = $- \left(x_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} + z_{10}\right) \, \mathbf{a}_{2}- \left(2 x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (16l) Rh VI
$\mathbf{B_{39}}$ = $\left(x_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(2 x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (16l) Rh VII
$\mathbf{B_{40}}$ = $\left(- x_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} - z_{11}\right) \, \mathbf{a}_{2}- \left(2 x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (16l) Rh VII
$\mathbf{B_{41}}$ = $\left(x_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(- x_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (16l) Rh VII
$\mathbf{B_{42}}$ = $- \left(x_{11} - z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (16l) Rh VII
$\mathbf{B_{43}}$ = $\left(x_{11} - z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (16l) Rh VII
$\mathbf{B_{44}}$ = $- \left(x_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (16l) Rh VII
$\mathbf{B_{45}}$ = $\left(x_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} - z_{11}\right) \, \mathbf{a}_{2}+\left(2 x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (16l) Rh VII
$\mathbf{B_{46}}$ = $- \left(x_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} + z_{11}\right) \, \mathbf{a}_{2}- \left(2 x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (16l) Rh VII
$\mathbf{B_{47}}$ = $\left(x_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(2 x_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (16l) Rh VIII
$\mathbf{B_{48}}$ = $\left(- x_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{12} - z_{12}\right) \, \mathbf{a}_{2}- \left(2 x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (16l) Rh VIII
$\mathbf{B_{49}}$ = $\left(x_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(- x_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (16l) Rh VIII
$\mathbf{B_{50}}$ = $- \left(x_{12} - z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (16l) Rh VIII
$\mathbf{B_{51}}$ = $\left(x_{12} - z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (16l) Rh VIII
$\mathbf{B_{52}}$ = $- \left(x_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (16l) Rh VIII
$\mathbf{B_{53}}$ = $\left(x_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} - z_{12}\right) \, \mathbf{a}_{2}+\left(2 x_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (16l) Rh VIII
$\mathbf{B_{54}}$ = $- \left(x_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{12} + z_{12}\right) \, \mathbf{a}_{2}- \left(2 x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (16l) Rh VIII
$\mathbf{B_{55}}$ = $\left(y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{56}}$ = $- \left(y_{13} - z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} - z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{57}}$ = $\left(x_{13} + z_{13}\right) \, \mathbf{a}_{1}- \left(y_{13} - z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13}\right) \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{58}}$ = $- \left(x_{13} - z_{13}\right) \, \mathbf{a}_{1}+\left(y_{13} + z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{59}}$ = $\left(y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{60}}$ = $- \left(y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{61}}$ = $\left(x_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13}\right) \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{62}}$ = $- \left(x_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13}\right) \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{63}}$ = $- \left(y_{13} + z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{64}}$ = $\left(y_{13} - z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{65}}$ = $- \left(x_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(y_{13} - z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{66}}$ = $\left(x_{13} - z_{13}\right) \, \mathbf{a}_{1}- \left(y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13}\right) \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{67}}$ = $\left(- y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{68}}$ = $\left(y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} - y_{13}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{69}}$ = $\left(- x_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13}\right) \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{70}}$ = $\left(x_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13}\right) \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu V
$\mathbf{B_{71}}$ = $\left(y_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{72}}$ = $- \left(y_{14} - z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} - z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{73}}$ = $\left(x_{14} + z_{14}\right) \, \mathbf{a}_{1}- \left(y_{14} - z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14}\right) \, \mathbf{a}_{3}$ = $- a y_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{74}}$ = $- \left(x_{14} - z_{14}\right) \, \mathbf{a}_{1}+\left(y_{14} + z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{3}$ = $a y_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{75}}$ = $\left(y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+a y_{14} \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{76}}$ = $- \left(y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}- a y_{14} \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{77}}$ = $\left(x_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14}\right) \, \mathbf{a}_{3}$ = $a y_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{78}}$ = $- \left(x_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14}\right) \, \mathbf{a}_{3}$ = $- a y_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{79}}$ = $- \left(y_{14} + z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} + z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a y_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{80}}$ = $\left(y_{14} - z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} - z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a y_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{81}}$ = $- \left(x_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(y_{14} - z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{3}$ = $a y_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{82}}$ = $\left(x_{14} - z_{14}\right) \, \mathbf{a}_{1}- \left(y_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14}\right) \, \mathbf{a}_{3}$ = $- a y_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{83}}$ = $\left(- y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}- a y_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{84}}$ = $\left(y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{14} - y_{14}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+a y_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{85}}$ = $\left(- x_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14}\right) \, \mathbf{a}_{3}$ = $- a y_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{86}}$ = $\left(x_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14}\right) \, \mathbf{a}_{3}$ = $a y_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VI
$\mathbf{B_{87}}$ = $\left(y_{15} + z_{15}\right) \, \mathbf{a}_{1}+\left(x_{15} + z_{15}\right) \, \mathbf{a}_{2}+\left(x_{15} + y_{15}\right) \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (32m) Pu VII
$\mathbf{B_{88}}$ = $- \left(y_{15} - z_{15}\right) \, \mathbf{a}_{1}- \left(x_{15} - z_{15}\right) \, \mathbf{a}_{2}- \left(x_{15} + y_{15}\right) \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (32m) Pu VII
$\mathbf{B_{89}}$ = $\left(x_{15} + z_{15}\right) \, \mathbf{a}_{1}- \left(y_{15} - z_{15}\right) \, \mathbf{a}_{2}+\left(x_{15} - y_{15}\right) \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (32m) Pu VII
$\mathbf{B_{90}}$ = $- \left(x_{15} - z_{15}\right) \, \mathbf{a}_{1}+\left(y_{15} + z_{15}\right) \, \mathbf{a}_{2}- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (32m) Pu VII
$\mathbf{B_{91}}$ = $\left(y_{15} - z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{15} + z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}+a y_{15} \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VII
$\mathbf{B_{92}}$ = $- \left(y_{15} + z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{15} - z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{15} - y_{15}\right) \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}- a y_{15} \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VII
$\mathbf{B_{93}}$ = $\left(x_{15} - z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{15} - z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{15} + y_{15}\right) \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VII
$\mathbf{B_{94}}$ = $- \left(x_{15} + z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{15} + z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{15} + y_{15}\right) \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VII
$\mathbf{B_{95}}$ = $- \left(y_{15} + z_{15}\right) \, \mathbf{a}_{1}- \left(x_{15} + z_{15}\right) \, \mathbf{a}_{2}- \left(x_{15} + y_{15}\right) \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- a y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (32m) Pu VII
$\mathbf{B_{96}}$ = $\left(y_{15} - z_{15}\right) \, \mathbf{a}_{1}+\left(x_{15} - z_{15}\right) \, \mathbf{a}_{2}+\left(x_{15} + y_{15}\right) \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+a y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (32m) Pu VII
$\mathbf{B_{97}}$ = $- \left(x_{15} + z_{15}\right) \, \mathbf{a}_{1}+\left(y_{15} - z_{15}\right) \, \mathbf{a}_{2}- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (32m) Pu VII
$\mathbf{B_{98}}$ = $\left(x_{15} - z_{15}\right) \, \mathbf{a}_{1}- \left(y_{15} + z_{15}\right) \, \mathbf{a}_{2}+\left(x_{15} - y_{15}\right) \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (32m) Pu VII
$\mathbf{B_{99}}$ = $\left(- y_{15} + z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{15} + z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{15} - y_{15}\right) \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}- a y_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VII
$\mathbf{B_{100}}$ = $\left(y_{15} + z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{15} + z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{15} - y_{15}\right) \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}+a y_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VII
$\mathbf{B_{101}}$ = $\left(- x_{15} + z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{15} + z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{15} + y_{15}\right) \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VII
$\mathbf{B_{102}}$ = $\left(x_{15} + z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{15} + z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{15} + y_{15}\right) \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (32m) Pu VII

References

  • D. T. Cromer and A. C. Larson, The Crystal Structure of Pu$_{31}$Pt$_{20}$ and Pu$_{31}$Rh$_{20}$, Acta Crystallogr. Sect. B 33, 2620–2627 (1977), doi:10.1107/S0567740877009030.

Prototype Generator

aflow --proto=A31B20_tI204_140_b2gh3m_ac2fh3l --params=$a,c/a,z_{4},z_{5},z_{6},z_{7},x_{8},x_{9},x_{10},z_{10},x_{11},z_{11},x_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15}$

Species:

Running:

Output: