Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_oP12_26_abc_ab-002

This structure originally had the label A2B_oP12_26_abc_ab.SeO2. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/2MYY
or https://aflow.org/p/A2B_oP12_26_abc_ab-002
or PDF Version

β-SeO$_{2}$ Structure: A2B_oP12_26_abc_ab-002

Picture of Structure; Click for Big Picture
Prototype O$_{2}$Se
AFLOW prototype label A2B_oP12_26_abc_ab-002
ICSD 99464
Pearson symbol oP12
Space group number 26
Space group symbol $Pmc2_1$
AFLOW prototype command aflow --proto=A2B_oP12_26_abc_ab-002
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}$

  • SeO$_{2}$ has been observed in three phases (Orosel, 2004):
  • The later two phases form at high pressures (up to 15GPa and 820°C) but upon quenching and slowly reducing the pressure they remain metastable under ambient conditions.
  • Data for $\beta$–SeO$_{2}$ was taken at 200K using powder diffraction data.
  • Space group $Pmc2_{1}$ #26 allows an arbitrary choice for the origin of the $z$-axis. Here we follow (Orosel, 2004) and set $z_{4} = 0$ for the Se II (2b) site.
  • $\beta$–SeO$_{2}$ has the same AFLOW label as 70 GPa H$_{2}$S, A2B_oP12_26_abc_ab. The structures are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $b y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{2}}$ = $- y_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{3}}$ = $y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2a) Se I
$\mathbf{B_{4}}$ = $- y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Se I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (2b) O II
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) O II
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2b) Se II
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Se II
$\mathbf{B_{9}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (4c) O III
$\mathbf{B_{10}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) O III
$\mathbf{B_{11}}$ = $x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) O III
$\mathbf{B_{12}}$ = $- x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (4c) O III

References

  • D. Orosel, O. Leynaud, P. Balog, and M. Jansen, Pressure–temperature phase diagram of SeO$_{2}$. Characterization of new phases, J. Solid State Chem. 177, 1631–1638 (2004), doi:10.1016/j.jssc.2003.12.028.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A2B_oP12_26_abc_ab --params=$a,b/a,c/a,y_{1},z_{1},y_{2},z_{2},y_{3},z_{3},y_{4},z_{4},x_{5},y_{5},z_{5}$

Species:

Running:

Output: