Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BCD2_hP18_180_f_c_b_i-001

This structure originally had the label A2BCD2_hP18_180_f_c_b_i. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/TQ0B
or https://aflow.org/p/A2BCD2_hP18_180_f_c_b_i-001
or PDF Version

Hg$_{2}$O$_{2}$NaI Structure: A2BCD2_hP18_180_f_c_b_i-001

Picture of Structure; Click for Big Picture
Prototype Hg$_{2}$INaO$_{2}$
AFLOW prototype label A2BCD2_hP18_180_f_c_b_i-001
ICSD 14125
Pearson symbol hP18
Space group number 180
Space group symbol $P6_222$
AFLOW prototype command aflow --proto=A2BCD2_hP18_180_f_c_b_i-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak x_{4}$

  • This structure can also be found in the enantiomorphic space group $P6_{4}22$ #181.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (3b) Na I
$\mathbf{B_{2}}$ = $\frac{1}{6} \, \mathbf{a}_{3}$ = $\frac{1}{6}c \,\mathbf{\hat{z}}$ (3b) Na I
$\mathbf{B_{3}}$ = $\frac{5}{6} \, \mathbf{a}_{3}$ = $\frac{5}{6}c \,\mathbf{\hat{z}}$ (3b) Na I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (3c) I I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (3c) I I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3c) I I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (6f) Hg I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{3} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{3} + 2\right) \,\mathbf{\hat{z}}$ (6f) Hg I
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c \left(z_{3} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (6f) Hg I
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{3} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{3} - 2\right) \,\mathbf{\hat{z}}$ (6f) Hg I
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (6f) Hg I
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c \left(z_{3} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (6f) Hg I
$\mathbf{B_{13}}$ = $x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ (6i) O I
$\mathbf{B_{14}}$ = $- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{15}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{16}}$ = $- x_{4} \, \mathbf{a}_{1}- 2 x_{4} \, \mathbf{a}_{2}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ (6i) O I
$\mathbf{B_{17}}$ = $2 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{18}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (6i) O I

References

  • K. Aurivillius, Least-Squares Refinement of the Crystal Structures of Orthorhombic HgO and of Hg$_{2}$O$_{2}$NaI, Acta Chemica Scand. 18, 1305–1306 (1964), doi:10.3891/acta.chem.scand.18-1305.

Prototype Generator

aflow --proto=A2BCD2_hP18_180_f_c_b_i --params=$a,c/a,z_{3},x_{4}$

Species:

Running:

Output: