AFLOW Prototype: A2BCD2_hP18_180_f_c_b_i-001
This structure originally had the label A2BCD2_hP18_180_f_c_b_i. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/TQ0B
or
https://aflow.org/p/A2BCD2_hP18_180_f_c_b_i-001
or
PDF Version
Prototype | Hg$_{2}$INaO$_{2}$ |
AFLOW prototype label | A2BCD2_hP18_180_f_c_b_i-001 |
ICSD | 14125 |
Pearson symbol | hP18 |
Space group number | 180 |
Space group symbol | $P6_222$ |
AFLOW prototype command |
aflow --proto=A2BCD2_hP18_180_f_c_b_i-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak x_{4}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (3b) | Na I |
$\mathbf{B_{2}}$ | = | $\frac{1}{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{6}c \,\mathbf{\hat{z}}$ | (3b) | Na I |
$\mathbf{B_{3}}$ | = | $\frac{5}{6} \, \mathbf{a}_{3}$ | = | $\frac{5}{6}c \,\mathbf{\hat{z}}$ | (3b) | Na I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ | (3c) | I I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (3c) | I I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (3c) | I I |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (6f) | Hg I |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{3} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{3} + 2\right) \,\mathbf{\hat{z}}$ | (6f) | Hg I |
$\mathbf{B_{9}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c \left(z_{3} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (6f) | Hg I |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{3} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{3} - 2\right) \,\mathbf{\hat{z}}$ | (6f) | Hg I |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (6f) | Hg I |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c \left(z_{3} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ | (6f) | Hg I |
$\mathbf{B_{13}}$ | = | $x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}$ | = | $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ | (6i) | O I |
$\mathbf{B_{14}}$ | = | $- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (6i) | O I |
$\mathbf{B_{15}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (6i) | O I |
$\mathbf{B_{16}}$ | = | $- x_{4} \, \mathbf{a}_{1}- 2 x_{4} \, \mathbf{a}_{2}$ | = | $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}$ | (6i) | O I |
$\mathbf{B_{17}}$ | = | $2 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (6i) | O I |
$\mathbf{B_{18}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (6i) | O I |