Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B3_hP15_152_c_ac-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/MKFS
or https://aflow.org/p/A2B3_hP15_152_c_ac-001
or PDF Version

Trigonal B$_{2}$O$_{3}$ Structure: A2B3_hP15_152_c_ac-001

Picture of Structure; Click for Big Picture
Prototype B$_{2}$O$_{3}$
AFLOW prototype label A2B3_hP15_152_c_ac-001
ICSD 51575
Pearson symbol hP15
Space group number 152
Space group symbol $P3_121$
AFLOW prototype command aflow --proto=A2B3_hP15_152_c_ac-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$

  • This is the ground state structure of B$_{2}$O$_{3}$. At approximately 2 GPa it transforms to a high-pressure orthorhombic phase.
  • Originally this phase was thought to be in space group $P3_{1}$ #144, but reanalysis by (Effenberger, 2001) showed that the higher symmetry group matches that data at least as well. For more history on the determination of the structure of B$_{2}$O$_{3}$, see (Prewitt, 1968).
  • Space group $P3_{2}21$ #154 is the enantiomorph of $P3_{1}21$ #152, so this structure could exist in that space group as well.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{1} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ (3a) O I
$\mathbf{B_{2}}$ = $x_{1} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a x_{1} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ (3a) O I
$\mathbf{B_{3}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}$ = $- a x_{1} \,\mathbf{\hat{x}}$ (3a) O I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (6c) B I
$\mathbf{B_{5}}$ = $- y_{2} \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - 2 y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (6c) B I
$\mathbf{B_{6}}$ = $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{2} + 2\right) \,\mathbf{\hat{z}}$ (6c) B I
$\mathbf{B_{7}}$ = $y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (6c) B I
$\mathbf{B_{8}}$ = $\left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- \left(z_{2} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - 2 y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{2} - 2\right) \,\mathbf{\hat{z}}$ (6c) B I
$\mathbf{B_{9}}$ = $- x_{2} \, \mathbf{a}_{1}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (6c) B I
$\mathbf{B_{10}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (6c) O II
$\mathbf{B_{11}}$ = $- y_{3} \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - 2 y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (6c) O II
$\mathbf{B_{12}}$ = $- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}+\frac{1}{3}c \left(3 z_{3} + 2\right) \,\mathbf{\hat{z}}$ (6c) O II
$\mathbf{B_{13}}$ = $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (6c) O II
$\mathbf{B_{14}}$ = $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{2}{3}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - 2 y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}- \frac{1}{3}c \left(3 z_{3} - 2\right) \,\mathbf{\hat{z}}$ (6c) O II
$\mathbf{B_{15}}$ = $- x_{3} \, \mathbf{a}_{1}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{3}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{3}\right) \,\mathbf{\hat{z}}$ (6c) O II

References

  • H. Effenberger, C. L. Lengauer, and E. Parthé, Trigonal B$_{2}$O$_{3}$ with Higher Space-Group Symmetry: Results of a Reevaluation, Monatsh. Chem. 132, 1515–1517 (2001), doi:10.1007/s007060170008.
  • C. T. Prewitt and R. D. Shannon, Crystal Structure of a High-Pressure Form of B$_{2}$O$_{3}$, Acta Crystallogr. Sect. B 24, 869–874 (1968), doi:10.1107/S0567740868003304.

Found in

  • A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, G. D. Ceder, and K. A. Persson, {Commentary: The Materials Project: A materials genome approach to accelerating materials innovation}, APL Materials 1, 011002 (2013), doi:10.1063/1.4812323.

Prototype Generator

aflow --proto=A2B3_hP15_152_c_ac --params=$a,c/a,x_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3}$

Species:

Running:

Output: