Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B3_oC20_36_b_ab-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/KLS9
or https://aflow.org/p/A2B3_oC20_36_b_ab-001
or PDF Version

Orthorhombic B$_{2}$O$_{3}$ Structure: A2B3_oC20_36_b_ab-001

Picture of Structure; Click for Big Picture
Prototype B$_{2}$O$_{3}$
AFLOW prototype label A2B3_oC20_36_b_ab-001
ICSD 34685
Pearson symbol oC20
Space group number 36
Space group symbol $Cmc2_1$
AFLOW prototype command aflow --proto=A2B3_oC20_36_b_ab-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$

  • This is the high-pressure structure of B$_{2}$O$_{3}$, stable above $≈ 2$\,GPa. The ground state is trigonal.
  • Data was taken a 6.5 GPa. (Prewitt, 1968) give the structure in the $Ccm2_{1}$ setting of space group #36. We used FINDSYM to transform it to the standard $Cmc2_{1}$ setting. This space group allows for an arbitrary placement of the origin of the $z$-axis, which we fixed by setting $z_{1} = 0$ for the O-I (2a) Wyckoff position.
  • The ICSD 34685 website entry for this structure states that it was refined at ambient pressure, but the data is consistent with the high-pressure structure shown here.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $b y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (4a) O I
$\mathbf{B_{2}}$ = $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) O I
$\mathbf{B_{3}}$ = $\left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8b) B I
$\mathbf{B_{4}}$ = $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8b) B I
$\mathbf{B_{5}}$ = $\left(x_{2} + y_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8b) B I
$\mathbf{B_{6}}$ = $- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8b) B I
$\mathbf{B_{7}}$ = $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8b) O II
$\mathbf{B_{8}}$ = $- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8b) O II
$\mathbf{B_{9}}$ = $\left(x_{3} + y_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8b) O II
$\mathbf{B_{10}}$ = $- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8b) O II

References

  • C. T. Prewitt and R. D. Shannon, Crystal Structure of a High-Pressure Form of B$_{2}$O$_{3}$, Acta Crystallogr. Sect. B 24, 869–874 (1968), doi:10.1107/S0567740868003304.

Found in

  • H. Effenberger, C. L. Lengauer, and E. Parthé, Trigonal B$_{2}$O$_{3}$ with Higher Space-Group Symmetry: Results of a Reevaluation, Monatsh. Chem. 132, 1515–1517 (2001), doi:10.1007/s007060170008.

Prototype Generator

aflow --proto=A2B3_oC20_36_b_ab --params=$a,b/a,c/a,y_{1},z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3}$

Species:

Running:

Output: