AFLOW Prototype: A2B2C_tP10_131_j_l_f-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/XLRT
or
https://aflow.org/p/A2B2C_tP10_131_j_l_f-001
or
PDF Version
Prototype | B$_{2}$C$_{2}$La |
AFLOW prototype label | A2B2C_tP10_131_j_l_f-001 |
ICSD | 23300 |
Pearson symbol | tP10 |
Space group number | 131 |
Space group symbol | $P4_2/mmc$ |
AFLOW prototype command |
aflow --proto=A2B2C_tP10_131_j_l_f-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}$ |
CaB$_{2}$C$_{2}$, CeB$_{2}$C$_{2}$, DyB$_{2}$C$_{2}$, EuB$_{2}$C$_{2}$, GdB$_{2}$C$_{2}$, HoB$_{2}$C$_{2}$, LuB$_{2}$C$_{2}$, NdB$_{2}$C$_{2}$, PrB$_{2}$C$_{2}$, SmB$_{2}$C$_{2}$, TbB$_{2}$C$_{2}$, TmB$_{2}$C$_{2}$, YB$_{2}$C$_{2}$, YbB$_{2}$C$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (2f) | La I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (2f) | La I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}$ | = | $a x_{2} \,\mathbf{\hat{x}}$ | (4j) | B I |
$\mathbf{B_{4}}$ | = | $- x_{2} \, \mathbf{a}_{1}$ | = | $- a x_{2} \,\mathbf{\hat{x}}$ | (4j) | B I |
$\mathbf{B_{5}}$ | = | $x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4j) | B I |
$\mathbf{B_{6}}$ | = | $- x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4j) | B I |
$\mathbf{B_{7}}$ | = | $x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4l) | C I |
$\mathbf{B_{8}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4l) | C I |
$\mathbf{B_{9}}$ | = | $x_{3} \, \mathbf{a}_{2}$ | = | $a x_{3} \,\mathbf{\hat{y}}$ | (4l) | C I |
$\mathbf{B_{10}}$ | = | $- x_{3} \, \mathbf{a}_{2}$ | = | $- a x_{3} \,\mathbf{\hat{y}}$ | (4l) | C I |