Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B2C_tP10_131_j_l_f-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/XLRT
or https://aflow.org/p/A2B2C_tP10_131_j_l_f-001
or PDF Version

LaB$_{2}$C$_{2}$ Structure: A2B2C_tP10_131_j_l_f-001

Picture of Structure; Click for Big Picture
Prototype B$_{2}$C$_{2}$La
AFLOW prototype label A2B2C_tP10_131_j_l_f-001
ICSD 23300
Pearson symbol tP10
Space group number 131
Space group symbol $P4_2/mmc$
AFLOW prototype command aflow --proto=A2B2C_tP10_131_j_l_f-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}$

Other compounds with this structure

CaB$_{2}$C$_{2}$,  CeB$_{2}$C$_{2}$,  DyB$_{2}$C$_{2}$,  EuB$_{2}$C$_{2}$,  GdB$_{2}$C$_{2}$,  HoB$_{2}$C$_{2}$,  LuB$_{2}$C$_{2}$,  NdB$_{2}$C$_{2}$,  PrB$_{2}$C$_{2}$,  SmB$_{2}$C$_{2}$,  TbB$_{2}$C$_{2}$,  TmB$_{2}$C$_{2}$,  YB$_{2}$C$_{2}$,  YbB$_{2}$C$_{2}$


  • (Bauer, 1980) placed this structure in space group $P\overline{4}2c$ #112, with lanthanum atoms at the (2a) Wyckoff site, boron at (4h), and carbon at (4i). (Cenzual, 1991) showed that these Wyckoff positions imply an inversion site not present in $P\overline{4}2c$, and so the true space group is $P4_{2}/mmc$ #131.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (2f) La I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (2f) La I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}$ = $a x_{2} \,\mathbf{\hat{x}}$ (4j) B I
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (4j) B I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4j) B I
$\mathbf{B_{6}}$ = $- x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4j) B I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4l) C I
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4l) C I
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{y}}$ (4l) C I
$\mathbf{B_{10}}$ = $- x_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{y}}$ (4l) C I

References

  • J. Bauer and O. Bars, The ordering of boron and carbon atoms in the LaB$_{2}$C$_{2}$ structure, Acta Crystallogr. Sect. B 36, 1540–1544 (1980), doi:10.1107/S0567740880006541.

Found in

  • K. Cenzual, L. M. Gelato, M. Penzo, and E. Parthé, Inorganic structure types with revised space groups. I, Acta Crystallogr. Sect. B 47, 433–439 (1991), doi:10.1107/S0108768191000903.

Prototype Generator

aflow --proto=A2B2C_tP10_131_j_l_f --params=$a,c/a,x_{2},x_{3}$

Species:

Running:

Output: