AFLOW Prototype: A2B2C_hP5_164_d_d_a-002
This structure originally had the label A2B2C_hP5_164_d_d_a. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/FG79
or
https://aflow.org/p/A2B2C_hP5_164_d_d_a-002
or
PDF Version
Prototype | Ce$_{2}$O$_{2}$S |
AFLOW prototype label | A2B2C_hP5_164_d_d_a-002 |
ICSD | 31639 |
Pearson symbol | hP5 |
Space group number | 164 |
Space group symbol | $P\overline{3}m1$ |
AFLOW prototype command |
aflow --proto=A2B2C_hP5_164_d_d_a-002
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak z_{3}$ |
BaCd$_{2}$As$_{2}$, CaAl$_{2}$Si$_{2}$, CaAs$_{2}$Bi$_{2}$, CaAs$_{2}$Mn$_{2}$, CaAs$_{2}$P$_{2}$, CaAs$_{2}$Sb$_{2}$, CaBi$_{2}$Mg$_{2}$, CaBi$_{2}$Mn$_{2}$, CaCd$_{2}$As$_{2}$, CaCd$_{2}$P$_{2}$, CaMg$_{2}$Bi$_{2}$, CaMg$_{2}$Sb$_{2}$, CaZn$_{2}$As$_{2}$, CaZn$_{2}$P$_{2}$, CaZn$_{2}$Sb$_{2}$, CeCuZnP$_{2}$, DyCuZnP$_{2}$, ErCuZnP$_{2}$, EuAs$_{2}$Cd$_{2}$, EuBi$_{2}$Mg$_{2}$, EuCd$_{2}$P$_{2}$, GdCuZnP$_{2}$, HoCuZnP$_{2}$, LaCuZnP$_{2}$, LuCuZnP$_{2}$, NdCuZnP$_{2}$, PrCuZnP$_{2}$, SCe$_{2}$O$_{2}$, SCe$_{2}$Se$_{2}$, SLa$_{2}$O$_{2}$, SO$_{2}$Pu$_{2}$, ScCuZnP$_{2}$, SmCuZnP$_{2}$, SrAs$_{2}$Mn$_{2}$, SrAs$_{2}$P$_{2}$, SrAs$_{2}$Sb$_{2}$, SrCd$_{2}$As$_{2}$, SrCd$_{2}$P$_{2}$, TbCuZnP$_{2}$, TmCuZnP$_{2}$, YCuZnP$_{2}$, YbCuZnP$_{2}$, YbMg$_{2}$Bi$_{2}$, YbMnCuP$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | S I |
$\mathbf{B_{2}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (2d) | Ce I |
$\mathbf{B_{3}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (2d) | Ce I |
$\mathbf{B_{4}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (2d) | O I |
$\mathbf{B_{5}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (2d) | O I |