AFLOW Prototype: A24B11_hP70_186_2ab7c_ab3c-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/D6S6
or
https://aflow.org/p/A24B11_hP70_186_2ab7c_ab3c-001
or
PDF Version
Prototype | Ce$_{24}$Co$_{11}$ |
AFLOW prototype label | A24B11_hP70_186_2ab7c_ab3c-001 |
ICSD | 102101 |
Pearson symbol | hP70 |
Space group number | 186 |
Space group symbol | $P6_3mc$ |
AFLOW prototype command |
aflow --proto=A24B11_hP70_186_2ab7c_ab3c-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak z_{15}$ |
La$_{24}$Ru$_{11}$, Nd$_{24}$Co$_{11}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $z_{1} \, \mathbf{a}_{3}$ | = | $c z_{1} \,\mathbf{\hat{z}}$ | (2a) | Ce I |
$\mathbf{B_{2}}$ | = | $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | Ce I |
$\mathbf{B_{3}}$ | = | $z_{2} \, \mathbf{a}_{3}$ | = | $c z_{2} \,\mathbf{\hat{z}}$ | (2a) | Ce II |
$\mathbf{B_{4}}$ | = | $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | Ce II |
$\mathbf{B_{5}}$ | = | $z_{3} \, \mathbf{a}_{3}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (2a) | Co I |
$\mathbf{B_{6}}$ | = | $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2a) | Co I |
$\mathbf{B_{7}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (2b) | Ce III |
$\mathbf{B_{8}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2b) | Ce III |
$\mathbf{B_{9}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (2b) | Co II |
$\mathbf{B_{10}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (2b) | Co II |
$\mathbf{B_{11}}$ | = | $x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (6c) | Ce IV |
$\mathbf{B_{12}}$ | = | $x_{6} \, \mathbf{a}_{1}+2 x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (6c) | Ce IV |
$\mathbf{B_{13}}$ | = | $- 2 x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (6c) | Ce IV |
$\mathbf{B_{14}}$ | = | $- x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce IV |
$\mathbf{B_{15}}$ | = | $- x_{6} \, \mathbf{a}_{1}- 2 x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{6} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce IV |
$\mathbf{B_{16}}$ | = | $2 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{6} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce IV |
$\mathbf{B_{17}}$ | = | $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (6c) | Ce V |
$\mathbf{B_{18}}$ | = | $x_{7} \, \mathbf{a}_{1}+2 x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{7} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (6c) | Ce V |
$\mathbf{B_{19}}$ | = | $- 2 x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{7} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (6c) | Ce V |
$\mathbf{B_{20}}$ | = | $- x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce V |
$\mathbf{B_{21}}$ | = | $- x_{7} \, \mathbf{a}_{1}- 2 x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{7} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce V |
$\mathbf{B_{22}}$ | = | $2 x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{7} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce V |
$\mathbf{B_{23}}$ | = | $x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (6c) | Ce VI |
$\mathbf{B_{24}}$ | = | $x_{8} \, \mathbf{a}_{1}+2 x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{8} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (6c) | Ce VI |
$\mathbf{B_{25}}$ | = | $- 2 x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{8} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (6c) | Ce VI |
$\mathbf{B_{26}}$ | = | $- x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce VI |
$\mathbf{B_{27}}$ | = | $- x_{8} \, \mathbf{a}_{1}- 2 x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{8} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce VI |
$\mathbf{B_{28}}$ | = | $2 x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{8} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce VI |
$\mathbf{B_{29}}$ | = | $x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (6c) | Ce VII |
$\mathbf{B_{30}}$ | = | $x_{9} \, \mathbf{a}_{1}+2 x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{9} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (6c) | Ce VII |
$\mathbf{B_{31}}$ | = | $- 2 x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{9} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (6c) | Ce VII |
$\mathbf{B_{32}}$ | = | $- x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce VII |
$\mathbf{B_{33}}$ | = | $- x_{9} \, \mathbf{a}_{1}- 2 x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{9} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce VII |
$\mathbf{B_{34}}$ | = | $2 x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{9} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce VII |
$\mathbf{B_{35}}$ | = | $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (6c) | Ce VIII |
$\mathbf{B_{36}}$ | = | $x_{10} \, \mathbf{a}_{1}+2 x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (6c) | Ce VIII |
$\mathbf{B_{37}}$ | = | $- 2 x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (6c) | Ce VIII |
$\mathbf{B_{38}}$ | = | $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce VIII |
$\mathbf{B_{39}}$ | = | $- x_{10} \, \mathbf{a}_{1}- 2 x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{10} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce VIII |
$\mathbf{B_{40}}$ | = | $2 x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{10} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce VIII |
$\mathbf{B_{41}}$ | = | $x_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (6c) | Ce IX |
$\mathbf{B_{42}}$ | = | $x_{11} \, \mathbf{a}_{1}+2 x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{11} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (6c) | Ce IX |
$\mathbf{B_{43}}$ | = | $- 2 x_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{11} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (6c) | Ce IX |
$\mathbf{B_{44}}$ | = | $- x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce IX |
$\mathbf{B_{45}}$ | = | $- x_{11} \, \mathbf{a}_{1}- 2 x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{11} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce IX |
$\mathbf{B_{46}}$ | = | $2 x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{11} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce IX |
$\mathbf{B_{47}}$ | = | $x_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ | (6c) | Ce X |
$\mathbf{B_{48}}$ | = | $x_{12} \, \mathbf{a}_{1}+2 x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{12} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ | (6c) | Ce X |
$\mathbf{B_{49}}$ | = | $- 2 x_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{12} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ | (6c) | Ce X |
$\mathbf{B_{50}}$ | = | $- x_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce X |
$\mathbf{B_{51}}$ | = | $- x_{12} \, \mathbf{a}_{1}- 2 x_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{12} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce X |
$\mathbf{B_{52}}$ | = | $2 x_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{12} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Ce X |
$\mathbf{B_{53}}$ | = | $x_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ | (6c) | Co III |
$\mathbf{B_{54}}$ | = | $x_{13} \, \mathbf{a}_{1}+2 x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{13} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ | (6c) | Co III |
$\mathbf{B_{55}}$ | = | $- 2 x_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{13} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ | (6c) | Co III |
$\mathbf{B_{56}}$ | = | $- x_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Co III |
$\mathbf{B_{57}}$ | = | $- x_{13} \, \mathbf{a}_{1}- 2 x_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{13} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Co III |
$\mathbf{B_{58}}$ | = | $2 x_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{13} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Co III |
$\mathbf{B_{59}}$ | = | $x_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ | (6c) | Co IV |
$\mathbf{B_{60}}$ | = | $x_{14} \, \mathbf{a}_{1}+2 x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{14} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ | (6c) | Co IV |
$\mathbf{B_{61}}$ | = | $- 2 x_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{14} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ | (6c) | Co IV |
$\mathbf{B_{62}}$ | = | $- x_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Co IV |
$\mathbf{B_{63}}$ | = | $- x_{14} \, \mathbf{a}_{1}- 2 x_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{14} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Co IV |
$\mathbf{B_{64}}$ | = | $2 x_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{14} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Co IV |
$\mathbf{B_{65}}$ | = | $x_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ | (6c) | Co V |
$\mathbf{B_{66}}$ | = | $x_{15} \, \mathbf{a}_{1}+2 x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{15} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ | (6c) | Co V |
$\mathbf{B_{67}}$ | = | $- 2 x_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{15} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ | (6c) | Co V |
$\mathbf{B_{68}}$ | = | $- x_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Co V |
$\mathbf{B_{69}}$ | = | $- x_{15} \, \mathbf{a}_{1}- 2 x_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{15} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Co V |
$\mathbf{B_{70}}$ | = | $2 x_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{15} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (6c) | Co V |