Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A24B11_hP70_186_2ab7c_ab3c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/D6S6
or https://aflow.org/p/A24B11_hP70_186_2ab7c_ab3c-001
or PDF Version

Ce$_{24}$Co$_{11}$ Structure: A24B11_hP70_186_2ab7c_ab3c-001

Picture of Structure; Click for Big Picture
Prototype Ce$_{24}$Co$_{11}$
AFLOW prototype label A24B11_hP70_186_2ab7c_ab3c-001
ICSD 102101
Pearson symbol hP70
Space group number 186
Space group symbol $P6_3mc$
AFLOW prototype command aflow --proto=A24B11_hP70_186_2ab7c_ab3c-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak z_{15}$

Other compounds with this structure

La$_{24}$Ru$_{11}$,  Nd$_{24}$Co$_{11}$


  • Space group $P6_{3}mc$ #186 allows an arbitrary placement of the origin of the $z$-axis. Here we set $z_{6} = 0$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) Ce I
$\mathbf{B_{2}}$ = $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Ce I
$\mathbf{B_{3}}$ = $z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (2a) Ce II
$\mathbf{B_{4}}$ = $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Ce II
$\mathbf{B_{5}}$ = $z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (2a) Co I
$\mathbf{B_{6}}$ = $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) Co I
$\mathbf{B_{7}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2b) Ce III
$\mathbf{B_{8}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Ce III
$\mathbf{B_{9}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (2b) Co II
$\mathbf{B_{10}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Co II
$\mathbf{B_{11}}$ = $x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (6c) Ce IV
$\mathbf{B_{12}}$ = $x_{6} \, \mathbf{a}_{1}+2 x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (6c) Ce IV
$\mathbf{B_{13}}$ = $- 2 x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (6c) Ce IV
$\mathbf{B_{14}}$ = $- x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce IV
$\mathbf{B_{15}}$ = $- x_{6} \, \mathbf{a}_{1}- 2 x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{6} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce IV
$\mathbf{B_{16}}$ = $2 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{6} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce IV
$\mathbf{B_{17}}$ = $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (6c) Ce V
$\mathbf{B_{18}}$ = $x_{7} \, \mathbf{a}_{1}+2 x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{7} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (6c) Ce V
$\mathbf{B_{19}}$ = $- 2 x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{7} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (6c) Ce V
$\mathbf{B_{20}}$ = $- x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce V
$\mathbf{B_{21}}$ = $- x_{7} \, \mathbf{a}_{1}- 2 x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{7} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce V
$\mathbf{B_{22}}$ = $2 x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{7} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce V
$\mathbf{B_{23}}$ = $x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (6c) Ce VI
$\mathbf{B_{24}}$ = $x_{8} \, \mathbf{a}_{1}+2 x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{8} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (6c) Ce VI
$\mathbf{B_{25}}$ = $- 2 x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{8} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (6c) Ce VI
$\mathbf{B_{26}}$ = $- x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce VI
$\mathbf{B_{27}}$ = $- x_{8} \, \mathbf{a}_{1}- 2 x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{8} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce VI
$\mathbf{B_{28}}$ = $2 x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{8} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce VI
$\mathbf{B_{29}}$ = $x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (6c) Ce VII
$\mathbf{B_{30}}$ = $x_{9} \, \mathbf{a}_{1}+2 x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{9} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (6c) Ce VII
$\mathbf{B_{31}}$ = $- 2 x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{9} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (6c) Ce VII
$\mathbf{B_{32}}$ = $- x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce VII
$\mathbf{B_{33}}$ = $- x_{9} \, \mathbf{a}_{1}- 2 x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{9} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce VII
$\mathbf{B_{34}}$ = $2 x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{9} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce VII
$\mathbf{B_{35}}$ = $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (6c) Ce VIII
$\mathbf{B_{36}}$ = $x_{10} \, \mathbf{a}_{1}+2 x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (6c) Ce VIII
$\mathbf{B_{37}}$ = $- 2 x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (6c) Ce VIII
$\mathbf{B_{38}}$ = $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce VIII
$\mathbf{B_{39}}$ = $- x_{10} \, \mathbf{a}_{1}- 2 x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{10} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce VIII
$\mathbf{B_{40}}$ = $2 x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{10} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce VIII
$\mathbf{B_{41}}$ = $x_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (6c) Ce IX
$\mathbf{B_{42}}$ = $x_{11} \, \mathbf{a}_{1}+2 x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{11} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (6c) Ce IX
$\mathbf{B_{43}}$ = $- 2 x_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{11} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (6c) Ce IX
$\mathbf{B_{44}}$ = $- x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce IX
$\mathbf{B_{45}}$ = $- x_{11} \, \mathbf{a}_{1}- 2 x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{11} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce IX
$\mathbf{B_{46}}$ = $2 x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{11} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce IX
$\mathbf{B_{47}}$ = $x_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (6c) Ce X
$\mathbf{B_{48}}$ = $x_{12} \, \mathbf{a}_{1}+2 x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{12} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (6c) Ce X
$\mathbf{B_{49}}$ = $- 2 x_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{12} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (6c) Ce X
$\mathbf{B_{50}}$ = $- x_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce X
$\mathbf{B_{51}}$ = $- x_{12} \, \mathbf{a}_{1}- 2 x_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{12} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce X
$\mathbf{B_{52}}$ = $2 x_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{12} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Ce X
$\mathbf{B_{53}}$ = $x_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (6c) Co III
$\mathbf{B_{54}}$ = $x_{13} \, \mathbf{a}_{1}+2 x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{13} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (6c) Co III
$\mathbf{B_{55}}$ = $- 2 x_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{13} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (6c) Co III
$\mathbf{B_{56}}$ = $- x_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Co III
$\mathbf{B_{57}}$ = $- x_{13} \, \mathbf{a}_{1}- 2 x_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{13} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Co III
$\mathbf{B_{58}}$ = $2 x_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{13} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Co III
$\mathbf{B_{59}}$ = $x_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (6c) Co IV
$\mathbf{B_{60}}$ = $x_{14} \, \mathbf{a}_{1}+2 x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{14} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (6c) Co IV
$\mathbf{B_{61}}$ = $- 2 x_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{14} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (6c) Co IV
$\mathbf{B_{62}}$ = $- x_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Co IV
$\mathbf{B_{63}}$ = $- x_{14} \, \mathbf{a}_{1}- 2 x_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{14} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Co IV
$\mathbf{B_{64}}$ = $2 x_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{14} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Co IV
$\mathbf{B_{65}}$ = $x_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (6c) Co V
$\mathbf{B_{66}}$ = $x_{15} \, \mathbf{a}_{1}+2 x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{15} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (6c) Co V
$\mathbf{B_{67}}$ = $- 2 x_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{15} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (6c) Co V
$\mathbf{B_{68}}$ = $- x_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Co V
$\mathbf{B_{69}}$ = $- x_{15} \, \mathbf{a}_{1}- 2 x_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{15} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Co V
$\mathbf{B_{70}}$ = $2 x_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{15} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Co V

References


Prototype Generator

aflow --proto=A24B11_hP70_186_2ab7c_ab3c --params=$a,c/a,z_{1},z_{2},z_{3},z_{4},z_{5},x_{6},z_{6},x_{7},z_{7},x_{8},z_{8},x_{9},z_{9},x_{10},z_{10},x_{11},z_{11},x_{12},z_{12},x_{13},z_{13},x_{14},z_{14},x_{15},z_{15}$

Species:

Running:

Output: