Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A16B6C7_cF116_225_2f_e_ad-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/NHP2
or https://aflow.org/p/A16B6C7_cF116_225_2f_e_ad-001
or PDF Version

Mg$_{6}$Si$_{7}$Cu$_{16}$ Structure: A16B6C7_cF116_225_2f_e_ad-001

Picture of Structure; Click for Big Picture
Prototype Cu$_{16}$Mg$_{6}$Si$_{7}$
AFLOW prototype label A16B6C7_cF116_225_2f_e_ad-001
ICSD 16624
Pearson symbol cF116
Space group number 225
Space group symbol $Fm\overline{3}m$
AFLOW prototype command aflow --proto=A16B6C7_cF116_225_2f_e_ad-001
--params=$a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}$

Other compounds with this structure

Hf$_{6}$Ge$_{7}$Co$_{16}$,  Hf$_{6}$Ge$_{7}$Ni$_{16}$,  Hf$_{6}$Si$_{7}$Co$_{16}$,  Hf$_{6}$Si$_{7}$Ni$_{16}$,  Mg$_{6}$Ge$_{7}$Ni$_{16}$,  Mg$_{6}$Si$_{7}$Co$_{16}$,  Mg$_{6}$Si$_{7}$Cu$_{16}$,  Mg$_{6}$Si$_{7}$Ni$_{16}$,  Mn$_{6}$Ge$_{7}$Ni$_{16}$,  Mn$_{6}$Si$_{7}$Ni$_{16}$,  Nb$_{6}$Ge$_{7}$Co$_{16}$,  Nb$_{6}$Ge$_{7}$Ni$_{16}$,  Nb$_{6}$Si$_{7}$Co$_{16}$,  Nb$_{6}$Si$_{7}$Ni$_{16}$,  Sc$_{6}$Ge$_{7}$Ni$_{16}$,  Sc$_{6}$Si$_{7}$Co$_{16}$,  Sc$_{6}$Si$_{7}$Ni$_{16}$,  Ta$_{6}$Ge$_{7}$Co$_{16}$,  Ta$_{6}$Ge$_{7}$Ni$_{16}$,  Ta$_{6}$Si$_{7}$Co$_{16}$,  Ta$_{6}$Si$_{7}$Ni$_{16}$,  Ti$_{6}$Ge$_{7}$Ni$_{16}$,  Ti$_{6}$Si$_{7}$Co$_{16}$,  Ti$_{6}$Si$_{7}$Ni$_{16}$,  V$_{6}$Si$_{7}$Ni$_{16}$,  Zr$_{6}$Ge$_{7}$Co$_{16}$,  Zr$_{6}$Ge$_{7}$Ni$_{16}$,  Zr$_{6}$Si$_{7}$Co$_{16}$,  Zr$_{6}$Si$_{7}$Ni$_{16}$



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Si I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Si II
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Si II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Si II
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Si II
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (24d) Si II
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24d) Si II
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}$ (24e) Mg I
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}$ (24e) Mg I
$\mathbf{B_{10}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{y}}$ (24e) Mg I
$\mathbf{B_{11}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{y}}$ (24e) Mg I
$\mathbf{B_{12}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{z}}$ (24e) Mg I
$\mathbf{B_{13}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{z}}$ (24e) Mg I
$\mathbf{B_{14}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{15}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- 3 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{16}}$ = $x_{4} \, \mathbf{a}_{1}- 3 x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{17}}$ = $- 3 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{18}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+3 x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{19}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{20}}$ = $- x_{4} \, \mathbf{a}_{1}+3 x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{21}}$ = $3 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{22}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{23}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- 3 x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{24}}$ = $x_{5} \, \mathbf{a}_{1}- 3 x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{25}}$ = $- 3 x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{26}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+3 x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{27}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{28}}$ = $- x_{5} \, \mathbf{a}_{1}+3 x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{29}}$ = $3 x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (32f) Cu II

References

  • G. Bergman and J. L. T. Waugh, The crystal structure of the intermetallic compound Mg$_{6}$Si$_{7}$Cu$_{16}$, Acta Cryst. 9, 214–217 (1956), doi:10.1107/S0365110X56000632.

Found in

  • K. L. Holman, E. Morosan, P. A. Casey, L. Li, N. P. Ong, T. Klimczuk, C. Felser, and R. J. Cava, Crystal structure and physical properties of Mg$_{6}$Cu$_{16}$Si$_{7}$-type M$_{6}$Ni$_{16}$Si$_{7}$, for M = Mg, Sc, Ti, Nb, and Ta, Mater. Res. Bull. 43, 9–15 (2008), doi:10.1016/j.materresbull.2007.09.023.

Prototype Generator

aflow --proto=A16B6C7_cF116_225_2f_e_ad --params=$a,x_{3},x_{4},x_{5}$

Species:

Running:

Output: