AFLOW Prototype: A12BC4_cP34_195_2j_ab_2e-001
This structure originally had the label A12BC4_cP34_195_2j_ab_2e. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/8SJC
or
https://aflow.org/p/A12BC4_cP34_195_2j_ab_2e-001
or
PDF Version
Prototype | P$_{12}$PrRu$_{4}$ |
AFLOW prototype label | A12BC4_cP34_195_2j_ab_2e-001 |
ICSD | 55834 |
Pearson symbol | cP34 |
Space group number | 195 |
Space group symbol | $P23$ |
AFLOW prototype command |
aflow --proto=A12BC4_cP34_195_2j_ab_2e-001
--params=$a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Pr I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (1b) | Pr II |
$\mathbf{B_{3}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (4e) | Ru I |
$\mathbf{B_{4}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (4e) | Ru I |
$\mathbf{B_{5}}$ | = | $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (4e) | Ru I |
$\mathbf{B_{6}}$ | = | $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (4e) | Ru I |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (4e) | Ru II |
$\mathbf{B_{8}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (4e) | Ru II |
$\mathbf{B_{9}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (4e) | Ru II |
$\mathbf{B_{10}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (4e) | Ru II |
$\mathbf{B_{11}}$ | = | $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ | (12j) | P I |
$\mathbf{B_{12}}$ | = | $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ | (12j) | P I |
$\mathbf{B_{13}}$ | = | $- x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ | (12j) | P I |
$\mathbf{B_{14}}$ | = | $x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ | (12j) | P I |
$\mathbf{B_{15}}$ | = | $z_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ | = | $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ | (12j) | P I |
$\mathbf{B_{16}}$ | = | $z_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ | = | $a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ | (12j) | P I |
$\mathbf{B_{17}}$ | = | $- z_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ | = | $- a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ | (12j) | P I |
$\mathbf{B_{18}}$ | = | $- z_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ | = | $- a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ | (12j) | P I |
$\mathbf{B_{19}}$ | = | $y_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (12j) | P I |
$\mathbf{B_{20}}$ | = | $- y_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $- a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (12j) | P I |
$\mathbf{B_{21}}$ | = | $y_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (12j) | P I |
$\mathbf{B_{22}}$ | = | $- y_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $- a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (12j) | P I |
$\mathbf{B_{23}}$ | = | $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ | (12j) | P II |
$\mathbf{B_{24}}$ | = | $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ | (12j) | P II |
$\mathbf{B_{25}}$ | = | $- x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ | (12j) | P II |
$\mathbf{B_{26}}$ | = | $x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ | (12j) | P II |
$\mathbf{B_{27}}$ | = | $z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ | = | $a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ | (12j) | P II |
$\mathbf{B_{28}}$ | = | $z_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ | = | $a z_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ | (12j) | P II |
$\mathbf{B_{29}}$ | = | $- z_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ | = | $- a z_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ | (12j) | P II |
$\mathbf{B_{30}}$ | = | $- z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ | = | $- a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ | (12j) | P II |
$\mathbf{B_{31}}$ | = | $y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ | (12j) | P II |
$\mathbf{B_{32}}$ | = | $- y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ | = | $- a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ | (12j) | P II |
$\mathbf{B_{33}}$ | = | $y_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ | = | $a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ | (12j) | P II |
$\mathbf{B_{34}}$ | = | $- y_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $- a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ | (12j) | P II |