$PrRu_4P_{12}$ Structure: A12BC4_cP34_195_2j_ab_2e-001

This structure originally had the label A12BC4_cP34_195_2j_ab_2e. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 2*, Comput. Mater. Sci. **161**, S1 (2019). doi: 10.1016/j.commatsci.2018.10.043

https://aflow.org/p/8SJC

https://aflow.org/p/A12BC4_cP34_195_2j_ab_2e-001

Prototype	$P_{12}PrRu_4$
AFLOW prototype label	$A12BC4_cP34_195_2j_ab_2e-001$
ICSD	55834
Pearson symbol	cP34
Space group number	195
Space group symbol	P23
AFLOW prototype command	aflowproto=A12BC4_cP34_195_2j_ab_2e-001 params= $a, x_3, x_4, x_5, y_5, z_5, x_6, y_6, z_6$

- (Lee, 2004) give two refinements of this structure, in space group P23 #195 and space group $Pm\overline{3} \#200$, both with the same R factor. We show the results for P23. AFLOW the difference between the two structures to be quite small.
- Using its default tolerance, AFLOW places this structure in space group $Im\bar{3}$ #204, with all the atoms of a given species located on one Wyckoff position. It is likely that first-principles calculations will relax into that space group.
- The reported P23 structure can be recovered using the command

 $\bullet \ aflow \ --proto = A12BC4_cP34_195_2j_ab_2e:P:Pr:Ru \ --params = a, x_3, x_4, x_5, y_5, z_5, x_6, y_6, z_6 \ --tolerance = 0.001.$

Simple Cubic primitive vectors

a_1	=	$a\mathbf{\hat{x}}$
$\mathbf{a_2}$	=	$a\mathbf{\hat{y}}$
$\mathbf{a_3}$	=	$a\mathbf{\hat{z}}$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
B_1	=	0	=	0	(1a)	Pr I
B_2	=	$rac{1}{2}{f a}_1+rac{1}{2}{f a}_2+rac{1}{2}{f a}_3$	=	$rac{1}{2}a\mathbf{\hat{x}}+rac{1}{2}a\mathbf{\hat{y}}+rac{1}{2}a\mathbf{\hat{z}}$	(1b)	Pr II
B_3	=	$x_3 \mathbf{a}_1 + x_3 \mathbf{a}_2 + x_3 \mathbf{a}_3$	=	$ax_3\mathbf{\hat{x}} + ax_3\mathbf{\hat{y}} + ax_3\mathbf{\hat{z}}$	(4e)	Ru I
$\mathbf{B_4}$	=	$-x_3 \mathbf{a}_1 - x_3 \mathbf{a}_2 + x_3 \mathbf{a}_3$	=	$-ax_3\mathbf{\hat{x}} - ax_3\mathbf{\hat{y}} + ax_3\mathbf{\hat{z}}$	(4e)	Ru I
B_5	=	$-x_3 \mathbf{a}_1 + x_3 \mathbf{a}_2 - x_3 \mathbf{a}_3$	=	$-ax_3\mathbf{\hat{x}}+ax_3\mathbf{\hat{y}}-ax_3\mathbf{\hat{z}}$	(4e)	Ru I
\mathbf{B}_{6}	=	$x_3 \mathbf{a}_1 - x_3 \mathbf{a}_2 - x_3 \mathbf{a}_3$	=	$ax_3\mathbf{\hat{x}} - ax_3\mathbf{\hat{y}} - ax_3\mathbf{\hat{z}}$	(4e)	Ru I
B_7	=	$x_4 \mathbf{a}_1 + x_4 \mathbf{a}_2 + x_4 \mathbf{a}_3$	=	$ax_4\mathbf{\hat{x}} + ax_4\mathbf{\hat{y}} + ax_4\mathbf{\hat{z}}$	(4e)	Ru II
$\mathbf{B_8}$	=	$-x_4 \mathbf{a}_1 - x_4 \mathbf{a}_2 + x_4 \mathbf{a}_3$	=	$-ax_4\mathbf{\hat{x}} - ax_4\mathbf{\hat{y}} + ax_4\mathbf{\hat{z}}$	(4e)	Ru II
\mathbf{B}_{9}	=	$-x_4 \mathbf{a}_1 + x_4 \mathbf{a}_2 - x_4 \mathbf{a}_3$	=	$-ax_4\mathbf{\hat{x}} + ax_4\mathbf{\hat{y}} - ax_4\mathbf{\hat{z}}$	(4e)	Ru II
$\mathbf{B_{10}}$	=	$x_4 \mathbf{a}_1 - x_4 \mathbf{a}_2 - x_4 \mathbf{a}_3$	=	$ax_4\mathbf{\hat{x}} - ax_4\mathbf{\hat{y}} - ax_4\mathbf{\hat{z}}$	(4e)	Ru II
B_{11}	=	$x_5 \mathbf{a}_1 + y_5 \mathbf{a}_2 + z_5 \mathbf{a}_3$	=	$ax_5\mathbf{\hat{x}} + ay_5\mathbf{\hat{y}} + az_5\mathbf{\hat{z}}$	(12j)	ΡI
$\mathbf{B_{12}}$	=	$-x_5 \mathbf{a}_1 - y_5 \mathbf{a}_2 + z_5 \mathbf{a}_3$	=	$-ax_5\mathbf{\hat{x}}-ay_5\mathbf{\hat{y}}+az_5\mathbf{\hat{z}}$	(12j)	ΡI
B_{13}	=	$-x_5 \mathbf{a}_1 + y_5 \mathbf{a}_2 - z_5 \mathbf{a}_3$	=	$-ax_5\mathbf{\hat{x}}+ay_5\mathbf{\hat{y}}-az_5\mathbf{\hat{z}}$	(12j)	ΡI
B_{14}	=	$x_5 \mathbf{a}_1 - y_5 \mathbf{a}_2 - z_5 \mathbf{a}_3$	=	$ax_5\mathbf{\hat{x}}-ay_5\mathbf{\hat{y}}-az_5\mathbf{\hat{z}}$	(12j)	ΡI
B_{15}	=	$z_5 \mathbf{a}_1 + x_5 \mathbf{a}_2 + y_5 \mathbf{a}_3$	=	$az_5\mathbf{\hat{x}} + ax_5\mathbf{\hat{y}} + ay_5\mathbf{\hat{z}}$	(12j)	ΡI
$\mathbf{B_{16}}$	=	$z_5 \mathbf{a}_1 - x_5 \mathbf{a}_2 - y_5 \mathbf{a}_3$	=	$az_5\mathbf{\hat{x}} - ax_5\mathbf{\hat{y}} - ay_5\mathbf{\hat{z}}$	(12j)	ΡI
B_{17}	=	$-z_5 \mathbf{a}_1 - x_5 \mathbf{a}_2 + y_5 \mathbf{a}_3$	=	$-az_5\mathbf{\hat{x}}-ax_5\mathbf{\hat{y}}+ay_5\mathbf{\hat{z}}$	(12j)	ΡI
B_{18}	=	$-z_5 \mathbf{a}_1 + x_5 \mathbf{a}_2 - y_5 \mathbf{a}_3$	=	$-az_5\mathbf{\hat{x}}+ax_5\mathbf{\hat{y}}-ay_5\mathbf{\hat{z}}$	(12j)	ΡI
B_{19}	=	$y_5 \mathbf{a}_1 + z_5 \mathbf{a}_2 + x_5 \mathbf{a}_3$	=	$ay_5\hat{\mathbf{x}} + az_5\hat{\mathbf{y}} + ax_5\hat{\mathbf{z}}$	(12j)	ΡI
$\mathbf{B_{20}}$	=	$-y_5 \mathbf{a}_1 + z_5 \mathbf{a}_2 - x_5 \mathbf{a}_3$	=	$-ay_5\mathbf{\hat{x}}+az_5\mathbf{\hat{y}}-ax_5\mathbf{\hat{z}}$	(12j)	ΡI
$\mathbf{B_{21}}$	=	$y_5 \mathbf{a}_1 - z_5 \mathbf{a}_2 - x_5 \mathbf{a}_3$	=	$ay_5\mathbf{\hat{x}} - az_5\mathbf{\hat{y}} - ax_5\mathbf{\hat{z}}$	(12j)	ΡI
$\mathbf{B_{22}}$	=	$-y_5 \mathbf{a}_1 - z_5 \mathbf{a}_2 + x_5 \mathbf{a}_3$	=	$-ay_5\mathbf{\hat{x}}-az_5\mathbf{\hat{y}}+ax_5\mathbf{\hat{z}}$	(12j)	ΡI
$\mathbf{B_{23}}$	=	$x_6 \mathbf{a}_1 + y_6 \mathbf{a}_2 + z_6 \mathbf{a}_3$	=	$ax_6\mathbf{\hat{x}} + ay_6\mathbf{\hat{y}} + az_6\mathbf{\hat{z}}$	(12j)	ΡII
$\mathbf{B_{24}}$	=	$-x_6 \mathbf{a}_1 - y_6 \mathbf{a}_2 + z_6 \mathbf{a}_3$	=	$-ax_6\mathbf{\hat{x}} - ay_6\mathbf{\hat{y}} + az_6\mathbf{\hat{z}}$	(12j)	ΡII
B_{25}	=	$-x_6 \mathbf{a}_1 + y_6 \mathbf{a}_2 - z_6 \mathbf{a}_3$	=	$-ax_6\mathbf{\hat{x}} + ay_6\mathbf{\hat{y}} - az_6\mathbf{\hat{z}}$	(12j)	ΡII
$\mathbf{B_{26}}$	=	$x_6 \mathbf{a}_1 - y_6 \mathbf{a}_2 - z_6 \mathbf{a}_3$	=	$ax_6\mathbf{\hat{x}} - ay_6\mathbf{\hat{y}} - az_6\mathbf{\hat{z}}$	(12j)	ΡII
B_{27}	=	$z_6 \mathbf{a}_1 + x_6 \mathbf{a}_2 + y_6 \mathbf{a}_3$	=	$az_6 \mathbf{\hat{x}} + ax_6 \mathbf{\hat{y}} + ay_6 \mathbf{\hat{z}}$	(12j)	ΡII

B_{28}	=	$z_6 \mathbf{a}_1 - x_6 \mathbf{a}_2 - y_6 \mathbf{a}_3$	=	$az_6 \mathbf{\hat{x}} - ax_6 \mathbf{\hat{y}} - ay_6 \mathbf{\hat{z}}$	(12j)	ΡII
B_{29}	=	$-z_6 \mathbf{a}_1 - x_6 \mathbf{a}_2 + y_6 \mathbf{a}_3$	=	$-az_6\mathbf{\hat{x}} - ax_6\mathbf{\hat{y}} + ay_6\mathbf{\hat{z}}$	(12j)	ΡII
B_{30}	=	$-z_6 \mathbf{a}_1 + x_6 \mathbf{a}_2 - y_6 \mathbf{a}_3$	=	$-az_6\mathbf{\hat{x}}+ax_6\mathbf{\hat{y}}-ay_6\mathbf{\hat{z}}$	(12j)	ΡII
B_{31}	=	$y_6 \mathbf{a}_1 + z_6 \mathbf{a}_2 + x_6 \mathbf{a}_3$	=	$ay_6\mathbf{\hat{x}} + az_6\mathbf{\hat{y}} + ax_6\mathbf{\hat{z}}$	(12j)	ΡII
B_{32}	=	$-y_6 \mathbf{a}_1 + z_6 \mathbf{a}_2 - x_6 \mathbf{a}_3$	=	$-ay_6\mathbf{\hat{x}}+az_6\mathbf{\hat{y}}-ax_6\mathbf{\hat{z}}$	(12j)	ΡII
B_{33}	=	$y_6 \mathbf{a}_1 - z_6 \mathbf{a}_2 - x_6 \mathbf{a}_3$	=	$ay_6\mathbf{\hat{x}} - az_6\mathbf{\hat{y}} - ax_6\mathbf{\hat{z}}$	(12j)	ΡII
B_{34}	=	$-y_6 \mathbf{a}_1 - z_6 \mathbf{a}_2 + x_6 \mathbf{a}_3$	=	$-ay_6\mathbf{\hat{x}} - az_6\mathbf{\hat{y}} + ax_6\mathbf{\hat{z}}$	(12j)	ΡII

References

- C. H. Lee, H. Matsuhata, H. Yamaguchi, C. Sekine, K. Kihou, and I. Shirotani, A study of the crystal structure at low temperature in the metal-insulator transition compound PrRu₄P₁₂, J. Magn. Magn. Mater. 272-276, 426-427 (2004), doi:10.1016/j.jmmm.2003.12.433.
- [2] H. T. Stokes and D. M. Hatch, FINDSYM: program for identifying the space-group symmetry of a crystal, J. Appl. Crystallogr. 38, 237–238 (2005), doi:10.1107/S0021889804031528.
- [3] D. Hicks, C. Oses, E. Gossett, G. Gomez, R. H. Taylor, C. Toher, M. J. Mehl, O. Levy, and S. Curtarolo, AFLOW-SYM: platform for the complete, automatic and self-consistent symmetry analysis of crystals, Acta Crystallogr. Sect. A 74, 184–203 (2018), doi:10.1107/S2053273318003066.
- [4] A. L. Speck, Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr. 36, 7–13 (2003), doi:10.1107/S0021889802022112.

Found in

[1] P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.