AFLOW Prototype: A11B3_oC28_65_c4gh_ah-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/2ATW
or
https://aflow.org/p/A11B3_oC28_65_c4gh_ah-001
or
PDF Version
Prototype | Sn$_{7}$Tb$_{3}$ |
AFLOW prototype label | A11B3_oC28_65_c4gh_ah-001 |
ICSD | 54357 |
Pearson symbol | oC28 |
Space group number | 65 |
Space group symbol | $Cmmm$ |
AFLOW prototype command |
aflow --proto=A11B3_oC28_65_c4gh_ah-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}$ |
Dy$_{3}$Sn$_{7}$, Gd$_{3}$Sn$_{7}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Tb I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2c) | Sn I |
$\mathbf{B_{3}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ | = | $a x_{3} \,\mathbf{\hat{x}}$ | (4g) | Sn II |
$\mathbf{B_{4}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ | = | $- a x_{3} \,\mathbf{\hat{x}}$ | (4g) | Sn II |
$\mathbf{B_{5}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ | = | $a x_{4} \,\mathbf{\hat{x}}$ | (4g) | Sn III |
$\mathbf{B_{6}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ | = | $- a x_{4} \,\mathbf{\hat{x}}$ | (4g) | Sn III |
$\mathbf{B_{7}}$ | = | $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}$ | = | $a x_{5} \,\mathbf{\hat{x}}$ | (4g) | Sn IV |
$\mathbf{B_{8}}$ | = | $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ | = | $- a x_{5} \,\mathbf{\hat{x}}$ | (4g) | Sn IV |
$\mathbf{B_{9}}$ | = | $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}$ | = | $a x_{6} \,\mathbf{\hat{x}}$ | (4g) | Sn V |
$\mathbf{B_{10}}$ | = | $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}$ | = | $- a x_{6} \,\mathbf{\hat{x}}$ | (4g) | Sn V |
$\mathbf{B_{11}}$ | = | $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Sn VI |
$\mathbf{B_{12}}$ | = | $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Sn VI |
$\mathbf{B_{13}}$ | = | $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Tb II |
$\mathbf{B_{14}}$ | = | $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4h) | Tb II |