$\mathrm{Tb}_{3} \mathrm{Sn}_{7}$ Structure:

A11B3_oC28_65_c4gh_ah-001
Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. In preparation.

Prototype

AFLOW prototype label
ICSD
Pearson symbol
Space group number
Space group symbol
AFLOW prototype command
$\mathrm{Sn}_{7} \mathrm{~Tb}_{3}$
A11B3_oC28_65_c4gh_ah-001
54357
oC28

65

Cmmm
aflow --proto=A11B3_oC28_65_c4gh_ah-001
--params $=a, b / a, c / a, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}$

Other compounds with this structure
$\mathrm{Dy}_{3} \mathrm{Sn}_{7}, \mathrm{Gd}_{3} \mathrm{Sn}_{7}$

- This is the low temperature phase of $\mathrm{Tb}_{3} \mathrm{Sn}_{7}$. (Palenzona, 1993) describe a high temperature phase but do not give enough information to determine the structure.
- The Sn-III (80\%), Sn-IV (13\%), and Sn-V (7\%) sites are only partially occupied. These three Wyckoff positions are very close together, so presumably only one of the sites is occupied at any location in the crystal.
- We shifted the coordinate system so that the Tb-I atom is at the origin and the longest primitive vector is along \mathbf{a}_{1}, rather than \mathbf{a}_{2} as given in (Palenzona, 1993).

Base-centered Orthorhombic primitive vectors

$$
\begin{aligned}
& \mathbf{a}_{\mathbf{1}}=\frac{1}{2} a \hat{\mathbf{x}}-\frac{1}{2} b \hat{\mathbf{y}} \\
& \mathbf{a}_{\mathbf{2}}=\frac{1}{2} a \hat{\mathbf{x}}+\frac{1}{2} b \hat{\mathbf{y}} \\
& \mathbf{a}_{\mathbf{3}}=c
\end{aligned}
$$

Basis vectors

Lattice coordinates

$\mathbf{B}_{1}=$
$\mathbf{B}_{2}=$
$\mathbf{B}_{3}=$
$\mathbf{B}_{4}=$
$\mathbf{B}_{5}=$
$\mathrm{B}_{6}=$
$\mathbf{B}_{7}=$
$\mathrm{B}_{8}=$
$\mathrm{B}_{9}=$
$x_{6} \mathbf{a}_{1}+x_{6} \mathbf{a}_{2}$
$-x_{6} \mathbf{a}_{1}-x_{6} \mathbf{a}_{2}$
$\mathbf{B}_{10}=$
$x_{7} \mathbf{a}_{1}+x_{7} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$
$\mathbf{B}_{12}=-x_{7} \mathbf{a}_{1}-x_{7} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$
$\mathrm{B}_{13}=$
$x_{8} \mathbf{a}_{1}+x_{8} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$
$\mathbf{B}_{14}=$
$-x_{8} \mathbf{a}_{1}-x_{8} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$
$=$
$=\quad a x_{7} \hat{\mathbf{x}}+\frac{1}{2} c \hat{\mathbf{z}}$
$=\quad-a x_{7} \hat{\mathbf{x}}+\frac{1}{2} c \hat{\mathbf{z}}$
$=\quad a x_{8} \hat{\mathbf{x}}+\frac{1}{2} c \hat{\mathbf{z}}$
Cartesian
0
$=$
$=\quad \frac{1}{2} a \hat{\mathbf{x}}+\frac{1}{2} c \hat{\mathbf{z}}$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$=\quad-a x_{8} \hat{\mathbf{x}}+\frac{1}{2} c \hat{\mathbf{z}}$

Wyckoff | Atom |
| :--- |
| position | type

(2a) Tb I
(2c) \quad Sn I
(4g) Sn II
(4g) Sn II
(4g) Sn III
(4g) Sn III
(4g) Sn IV
(4g) Sn IV
(4g) \quad Sn V
(4g) \quad Sn V
(4h) Sn VI
(4h) \quad Sn VI
(4h) Tb II
(4h)
Tb II

References

[1] A. Palenzona and P. Manfrinetti, The tin-rich side of the rare earth-tin systems ($R=G d, T b, D y, H o, E r, T m, L u$ and Y), J. Alloys Compd. 201, 43-47 (1993), doi 10.1016/0925-8388(93)90859-L.

