Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_hR105_166_ac9h4i-001

This structure originally had the label A_hR105_166_bc9h4i. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/Y6TF
or https://aflow.org/p/A_hR105_166_ac9h4i-001
or PDF Version

β-B (R-105) Structure: A_hR105_166_ac9h4i-001

Picture of Structure; Click for Big Picture
Prototype B
AFLOW prototype label A_hR105_166_ac9h4i-001
ICSD 14288
Pearson symbol hR105
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A_hR105_166_ac9h4i-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}$

  • This is apparently the ground state of boron, with 105 atoms in the unit cell.
  • (Donohue, 1982) gives two possible sets of internal coordinates for the atoms on page 64. We use the second set (Geist, 1970), as it has no partially filled sites.
  • Note the relationship between the icosahedra in this structure, $\alpha$–B and T-50 B.
  • Hexagonal settings for rhombohedral structures can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) B I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (2c) B II
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- c x_{2} \,\mathbf{\hat{z}}$ (2c) B II
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6h) B III
$\mathbf{B_{5}}$ = $z_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6h) B III
$\mathbf{B_{6}}$ = $x_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6h) B III
$\mathbf{B_{7}}$ = $- z_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6h) B III
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6h) B III
$\mathbf{B_{9}}$ = $- x_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6h) B III
$\mathbf{B_{10}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) B IV
$\mathbf{B_{11}}$ = $z_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) B IV
$\mathbf{B_{12}}$ = $x_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) B IV
$\mathbf{B_{13}}$ = $- z_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) B IV
$\mathbf{B_{14}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) B IV
$\mathbf{B_{15}}$ = $- x_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) B IV
$\mathbf{B_{16}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) B V
$\mathbf{B_{17}}$ = $z_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) B V
$\mathbf{B_{18}}$ = $x_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) B V
$\mathbf{B_{19}}$ = $- z_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) B V
$\mathbf{B_{20}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) B V
$\mathbf{B_{21}}$ = $- x_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6h) B V
$\mathbf{B_{22}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) B VI
$\mathbf{B_{23}}$ = $z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) B VI
$\mathbf{B_{24}}$ = $x_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) B VI
$\mathbf{B_{25}}$ = $- z_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) B VI
$\mathbf{B_{26}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) B VI
$\mathbf{B_{27}}$ = $- x_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6h) B VI
$\mathbf{B_{28}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) B VII
$\mathbf{B_{29}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) B VII
$\mathbf{B_{30}}$ = $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) B VII
$\mathbf{B_{31}}$ = $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) B VII
$\mathbf{B_{32}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) B VII
$\mathbf{B_{33}}$ = $- x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6h) B VII
$\mathbf{B_{34}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6h) B VIII
$\mathbf{B_{35}}$ = $z_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6h) B VIII
$\mathbf{B_{36}}$ = $x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6h) B VIII
$\mathbf{B_{37}}$ = $- z_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6h) B VIII
$\mathbf{B_{38}}$ = $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6h) B VIII
$\mathbf{B_{39}}$ = $- x_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ (6h) B VIII
$\mathbf{B_{40}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6h) B IX
$\mathbf{B_{41}}$ = $z_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6h) B IX
$\mathbf{B_{42}}$ = $x_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6h) B IX
$\mathbf{B_{43}}$ = $- z_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6h) B IX
$\mathbf{B_{44}}$ = $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6h) B IX
$\mathbf{B_{45}}$ = $- x_{9} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ (6h) B IX
$\mathbf{B_{46}}$ = $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (6h) B X
$\mathbf{B_{47}}$ = $z_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (6h) B X
$\mathbf{B_{48}}$ = $x_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (6h) B X
$\mathbf{B_{49}}$ = $- z_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (6h) B X
$\mathbf{B_{50}}$ = $- x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (6h) B X
$\mathbf{B_{51}}$ = $- x_{10} \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ (6h) B X
$\mathbf{B_{52}}$ = $x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (6h) B XI
$\mathbf{B_{53}}$ = $z_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (6h) B XI
$\mathbf{B_{54}}$ = $x_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (6h) B XI
$\mathbf{B_{55}}$ = $- z_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- x_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (6h) B XI
$\mathbf{B_{56}}$ = $- x_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (6h) B XI
$\mathbf{B_{57}}$ = $- x_{11} \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{2}- x_{11} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{11} - z_{11}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{11} + z_{11}\right) \,\mathbf{\hat{z}}$ (6h) B XI
$\mathbf{B_{58}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} - z_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{12} - 2 y_{12} + z_{12}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{12} + y_{12} + z_{12}\right) \,\mathbf{\hat{z}}$ (12i) B XII
$\mathbf{B_{59}}$ = $z_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+y_{12} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{12} - z_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{12} - y_{12} - z_{12}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{12} + y_{12} + z_{12}\right) \,\mathbf{\hat{z}}$ (12i) B XII
$\mathbf{B_{60}}$ = $y_{12} \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{2}+x_{12} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{12} + y_{12} - 2 z_{12}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{12} + y_{12} + z_{12}\right) \,\mathbf{\hat{z}}$ (12i) B XII
$\mathbf{B_{61}}$ = $- z_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- x_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} - z_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{12} - 2 y_{12} + z_{12}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{12} + y_{12} + z_{12}\right) \,\mathbf{\hat{z}}$ (12i) B XII
$\mathbf{B_{62}}$ = $- y_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{12} - z_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{12} - y_{12} - z_{12}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{12} + y_{12} + z_{12}\right) \,\mathbf{\hat{z}}$ (12i) B XII
$\mathbf{B_{63}}$ = $- x_{12} \, \mathbf{a}_{1}- z_{12} \, \mathbf{a}_{2}- y_{12} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{12} + y_{12} - 2 z_{12}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{12} + y_{12} + z_{12}\right) \,\mathbf{\hat{z}}$ (12i) B XII
$\mathbf{B_{64}}$ = $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{12} - z_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{12} - 2 y_{12} + z_{12}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{12} + y_{12} + z_{12}\right) \,\mathbf{\hat{z}}$ (12i) B XII
$\mathbf{B_{65}}$ = $- z_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}- y_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{12} - z_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{12} - y_{12} - z_{12}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{12} + y_{12} + z_{12}\right) \,\mathbf{\hat{z}}$ (12i) B XII
$\mathbf{B_{66}}$ = $- y_{12} \, \mathbf{a}_{1}- z_{12} \, \mathbf{a}_{2}- x_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{12} + y_{12} - 2 z_{12}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{12} + y_{12} + z_{12}\right) \,\mathbf{\hat{z}}$ (12i) B XII
$\mathbf{B_{67}}$ = $z_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+x_{12} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{12} - z_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{12} - 2 y_{12} + z_{12}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{12} + y_{12} + z_{12}\right) \,\mathbf{\hat{z}}$ (12i) B XII
$\mathbf{B_{68}}$ = $y_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{12} - z_{12}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{12} - y_{12} - z_{12}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{12} + y_{12} + z_{12}\right) \,\mathbf{\hat{z}}$ (12i) B XII
$\mathbf{B_{69}}$ = $x_{12} \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{2}+y_{12} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{12} - y_{12}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{12} + y_{12} - 2 z_{12}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{12} + y_{12} + z_{12}\right) \,\mathbf{\hat{z}}$ (12i) B XII
$\mathbf{B_{70}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} - z_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{13} - 2 y_{13} + z_{13}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{13} + y_{13} + z_{13}\right) \,\mathbf{\hat{z}}$ (12i) B XIII
$\mathbf{B_{71}}$ = $z_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+y_{13} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{13} - z_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{13} - y_{13} - z_{13}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{13} + y_{13} + z_{13}\right) \,\mathbf{\hat{z}}$ (12i) B XIII
$\mathbf{B_{72}}$ = $y_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}+x_{13} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{13} - y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{13} + y_{13} - 2 z_{13}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{13} + y_{13} + z_{13}\right) \,\mathbf{\hat{z}}$ (12i) B XIII
$\mathbf{B_{73}}$ = $- z_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}- x_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} - z_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{13} - 2 y_{13} + z_{13}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{13} + y_{13} + z_{13}\right) \,\mathbf{\hat{z}}$ (12i) B XIII
$\mathbf{B_{74}}$ = $- y_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{13} - z_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{13} - y_{13} - z_{13}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{13} + y_{13} + z_{13}\right) \,\mathbf{\hat{z}}$ (12i) B XIII
$\mathbf{B_{75}}$ = $- x_{13} \, \mathbf{a}_{1}- z_{13} \, \mathbf{a}_{2}- y_{13} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{13} - y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{13} + y_{13} - 2 z_{13}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{13} + y_{13} + z_{13}\right) \,\mathbf{\hat{z}}$ (12i) B XIII
$\mathbf{B_{76}}$ = $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{13} - z_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{13} - 2 y_{13} + z_{13}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{13} + y_{13} + z_{13}\right) \,\mathbf{\hat{z}}$ (12i) B XIII
$\mathbf{B_{77}}$ = $- z_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}- y_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{13} - z_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{13} - y_{13} - z_{13}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{13} + y_{13} + z_{13}\right) \,\mathbf{\hat{z}}$ (12i) B XIII
$\mathbf{B_{78}}$ = $- y_{13} \, \mathbf{a}_{1}- z_{13} \, \mathbf{a}_{2}- x_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} - y_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{13} + y_{13} - 2 z_{13}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{13} + y_{13} + z_{13}\right) \,\mathbf{\hat{z}}$ (12i) B XIII
$\mathbf{B_{79}}$ = $z_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+x_{13} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{13} - z_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{13} - 2 y_{13} + z_{13}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{13} + y_{13} + z_{13}\right) \,\mathbf{\hat{z}}$ (12i) B XIII
$\mathbf{B_{80}}$ = $y_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{13} - z_{13}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{13} - y_{13} - z_{13}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{13} + y_{13} + z_{13}\right) \,\mathbf{\hat{z}}$ (12i) B XIII
$\mathbf{B_{81}}$ = $x_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}+y_{13} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{13} - y_{13}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{13} + y_{13} - 2 z_{13}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{13} + y_{13} + z_{13}\right) \,\mathbf{\hat{z}}$ (12i) B XIII
$\mathbf{B_{82}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} - z_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{14} - 2 y_{14} + z_{14}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{14} + y_{14} + z_{14}\right) \,\mathbf{\hat{z}}$ (12i) B XIV
$\mathbf{B_{83}}$ = $z_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+y_{14} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{14} - z_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{14} - y_{14} - z_{14}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{14} + y_{14} + z_{14}\right) \,\mathbf{\hat{z}}$ (12i) B XIV
$\mathbf{B_{84}}$ = $y_{14} \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}+x_{14} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{14} - y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{14} + y_{14} - 2 z_{14}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{14} + y_{14} + z_{14}\right) \,\mathbf{\hat{z}}$ (12i) B XIV
$\mathbf{B_{85}}$ = $- z_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}- x_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} - z_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{14} - 2 y_{14} + z_{14}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{14} + y_{14} + z_{14}\right) \,\mathbf{\hat{z}}$ (12i) B XIV
$\mathbf{B_{86}}$ = $- y_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{14} - z_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{14} - y_{14} - z_{14}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{14} + y_{14} + z_{14}\right) \,\mathbf{\hat{z}}$ (12i) B XIV
$\mathbf{B_{87}}$ = $- x_{14} \, \mathbf{a}_{1}- z_{14} \, \mathbf{a}_{2}- y_{14} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{14} - y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{14} + y_{14} - 2 z_{14}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{14} + y_{14} + z_{14}\right) \,\mathbf{\hat{z}}$ (12i) B XIV
$\mathbf{B_{88}}$ = $- x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{14} - z_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{14} - 2 y_{14} + z_{14}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{14} + y_{14} + z_{14}\right) \,\mathbf{\hat{z}}$ (12i) B XIV
$\mathbf{B_{89}}$ = $- z_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}- y_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{14} - z_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{14} - y_{14} - z_{14}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{14} + y_{14} + z_{14}\right) \,\mathbf{\hat{z}}$ (12i) B XIV
$\mathbf{B_{90}}$ = $- y_{14} \, \mathbf{a}_{1}- z_{14} \, \mathbf{a}_{2}- x_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} - y_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{14} + y_{14} - 2 z_{14}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{14} + y_{14} + z_{14}\right) \,\mathbf{\hat{z}}$ (12i) B XIV
$\mathbf{B_{91}}$ = $z_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+x_{14} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{14} - z_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{14} - 2 y_{14} + z_{14}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{14} + y_{14} + z_{14}\right) \,\mathbf{\hat{z}}$ (12i) B XIV
$\mathbf{B_{92}}$ = $y_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{14} - z_{14}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{14} - y_{14} - z_{14}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{14} + y_{14} + z_{14}\right) \,\mathbf{\hat{z}}$ (12i) B XIV
$\mathbf{B_{93}}$ = $x_{14} \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}+y_{14} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{14} - y_{14}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{14} + y_{14} - 2 z_{14}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{14} + y_{14} + z_{14}\right) \,\mathbf{\hat{z}}$ (12i) B XIV
$\mathbf{B_{94}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} - z_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{15} - 2 y_{15} + z_{15}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{15} + y_{15} + z_{15}\right) \,\mathbf{\hat{z}}$ (12i) B XV
$\mathbf{B_{95}}$ = $z_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+y_{15} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{15} - z_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{15} - y_{15} - z_{15}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{15} + y_{15} + z_{15}\right) \,\mathbf{\hat{z}}$ (12i) B XV
$\mathbf{B_{96}}$ = $y_{15} \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+x_{15} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{15} - y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{15} + y_{15} - 2 z_{15}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{15} + y_{15} + z_{15}\right) \,\mathbf{\hat{z}}$ (12i) B XV
$\mathbf{B_{97}}$ = $- z_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}- x_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} - z_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{15} - 2 y_{15} + z_{15}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{15} + y_{15} + z_{15}\right) \,\mathbf{\hat{z}}$ (12i) B XV
$\mathbf{B_{98}}$ = $- y_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{15} - z_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{15} - y_{15} - z_{15}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{15} + y_{15} + z_{15}\right) \,\mathbf{\hat{z}}$ (12i) B XV
$\mathbf{B_{99}}$ = $- x_{15} \, \mathbf{a}_{1}- z_{15} \, \mathbf{a}_{2}- y_{15} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{15} - y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{15} + y_{15} - 2 z_{15}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{15} + y_{15} + z_{15}\right) \,\mathbf{\hat{z}}$ (12i) B XV
$\mathbf{B_{100}}$ = $- x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{15} - z_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{15} - 2 y_{15} + z_{15}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{15} + y_{15} + z_{15}\right) \,\mathbf{\hat{z}}$ (12i) B XV
$\mathbf{B_{101}}$ = $- z_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}- y_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{15} - z_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{15} - y_{15} - z_{15}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{15} + y_{15} + z_{15}\right) \,\mathbf{\hat{z}}$ (12i) B XV
$\mathbf{B_{102}}$ = $- y_{15} \, \mathbf{a}_{1}- z_{15} \, \mathbf{a}_{2}- x_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} - y_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{15} + y_{15} - 2 z_{15}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{15} + y_{15} + z_{15}\right) \,\mathbf{\hat{z}}$ (12i) B XV
$\mathbf{B_{103}}$ = $z_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+x_{15} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{15} - z_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{15} - 2 y_{15} + z_{15}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{15} + y_{15} + z_{15}\right) \,\mathbf{\hat{z}}$ (12i) B XV
$\mathbf{B_{104}}$ = $y_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{15} - z_{15}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{15} - y_{15} - z_{15}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{15} + y_{15} + z_{15}\right) \,\mathbf{\hat{z}}$ (12i) B XV
$\mathbf{B_{105}}$ = $x_{15} \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+y_{15} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{15} - y_{15}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{15} + y_{15} - 2 z_{15}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{15} + y_{15} + z_{15}\right) \,\mathbf{\hat{z}}$ (12i) B XV

References

  • D. Geist, R. Kloss, and H. Follner, Verfeinerung des β-rhomboedrischen Bors, Acta Crystallogr. Sect. B 26, 1800–1804 (1970), doi:10.1107/S0567740870004910.

Found in

  • J. Donohue, The Structures of the Elements (Robert E. Krieger Publishing Company, New York, 1974).

Prototype Generator

aflow --proto=A_hR105_166_ac9h4i --params=$a,c/a,x_{2},x_{3},z_{3},x_{4},z_{4},x_{5},z_{5},x_{6},z_{6},x_{7},z_{7},x_{8},z_{8},x_{9},z_{9},x_{10},z_{10},x_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15}$

Species:

Running:

Output: