AFLOW Prototype: A_hP6_178_a-001
This structure originally had the label A_hP6_178_a. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/Z993
or
https://aflow.org/p/A_hP6_178_a-001
or
PDF Version
Prototype | Sc |
AFLOW prototype label | A_hP6_178_a-001 |
ICSD | 153837 |
Pearson symbol | hP6 |
Space group number | 178 |
Space group symbol | $P6_122$ |
AFLOW prototype command |
aflow --proto=A_hP6_178_a-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}$ | = | $\frac{1}{2}a x_{1} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}$ | (6a) | Sc I |
$\mathbf{B_{2}}$ | = | $x_{1} \, \mathbf{a}_{2}+\frac{1}{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{1} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}$ | (6a) | Sc I |
$\mathbf{B_{3}}$ | = | $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\frac{2}{3} \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}+\frac{2}{3}c \,\mathbf{\hat{z}}$ | (6a) | Sc I |
$\mathbf{B_{4}}$ | = | $- x_{1} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{1} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (6a) | Sc I |
$\mathbf{B_{5}}$ | = | $- x_{1} \, \mathbf{a}_{2}+\frac{5}{6} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{1} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{1} \,\mathbf{\hat{y}}+\frac{5}{6}c \,\mathbf{\hat{z}}$ | (6a) | Sc I |
$\mathbf{B_{6}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+\frac{1}{6} \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{x}}+\frac{1}{6}c \,\mathbf{\hat{z}}$ | (6a) | Sc I |